scholarly journals Laser Direct Writing of Hydrous Ruthenium Dioxide Micro-Pseudocapacitors

2001 ◽  
Vol 698 ◽  
Author(s):  
Craig B. Arnold ◽  
Ryan C. Wartena ◽  
Bhanu Pratap ◽  
Karen E. Swider-Lyons ◽  
Alberto Piqué

ABSTRACTWe are using a laser engineering approach to develop and optimize hydrous ruthenium dioxide (RuOxHy or RuO2·0.5 H2O) pseudocapacitors. We employ a novel laser forward transfer process, Matrix Assisted Pulsed Laser Evaporation Direct Write (MAPLE-DW), in combination with UV laser machining, to fabricate mesoscale pseudocapacitors and microbatteries under ambient temperature and atmospheric conditions. Thin films with the desired high surface area morphology are obtained without compromising their electrochemical performance. The highest capacitance structures are achieved by depositing mixtures of sulfuric acid with the RuO2·0.5 H2O electrode material. Our pseudocapacitors exhibit linear discharge behavior and their properties scale proportionately when assembled in parallel and series configurations.

Author(s):  
Andrew D. Dias ◽  
David M. Kingsley ◽  
Douglas B. Chrisey ◽  
David T. Corr

Microbeads are becoming popular tools in tissue engineering as 3D microstructure hydrogels. The gel nature of microbeads enables them to sequester soluble factors and mammalian cells, and their high surface area-to-volume ratio allows diffusion between the bead and the environment [1,2]. Microbeads are thus good systems for drug delivery and can serve as 3D microenvironments for cells. To fully maximize their potential as delivery systems and microenvironments, it is highly desirable to create spatially-precise hybrid cultures of microbeads and mammalian cells. Precise placement of microbeads in proximity to patterned cells will allow the study of spatial cellular interactions, paracrine signaling, and drug delivery.


2005 ◽  
Vol 34 (3) ◽  
pp. 390-391 ◽  
Author(s):  
Weihua Shen ◽  
Jianlin Shi ◽  
Hangrong Chen ◽  
Jinlou Gu ◽  
Yufang Zhu ◽  
...  

2011 ◽  
Vol 133 (2) ◽  
Author(s):  
Yafu Lin ◽  
Yong Huang ◽  
Douglas B. Chrisey

Laser direct-write technology such as modified laser-induced forward transfer (LIFT) is emerging as a revolutionary technology for biological construct fabrication. While many modified LIFT-based cell direct writing successes have been achieved, possible process-induced cell injury and death is still a big hurdle for modified LIFT-based cell direct writing to be a viable technology. The objective of this study is to propose metallic foil-assisted LIFT using a four-layer structure to achieve better droplet size control and increase cell viability in direct writing of human colon cancer cells (HT-29). The proposed four layers include a quartz disk, a sacrificial and adhesive layer, a metallic foil, and a cell suspension layer. The bubble formation-induced stress wave is responsible for droplet formation. It is found that the proposed metallic foil-assisted LIFT approach is an effective cell direct-write technology and provides better printing resolution and high post-transfer cell viability when compared with other conventional modified LIFT technologies such as matrix-assisted pulsed-laser evaporation direct-write; at the same time, the possible contamination from the laser energy absorbing material is minimized using a metallic foil.


2001 ◽  
Vol 16 (11) ◽  
pp. 3214-3222 ◽  
Author(s):  
R. Modi ◽  
H. D. Wu ◽  
R. C. Y. Auyeung ◽  
C. M. Gilmore ◽  
D. B. Chrisey

Polymer thick film (PTF) resistors were fabricated using a new laser-based transfer technique called matrix-assisted pulsed laser evaporation direct write (MAPLE-DW). MAPLE-DW is a versatile direct writing technique capable of writing a wide variety of materials on virtually any substrate in air and at room temperature. Epoxy-based PTF resistors spanning four decades of sheet resistances (10 Ω/sq. to 100 kΩ/sq.) were deposited on alumina substrates under ambient conditions. Electrical characteristics of these MAPLE-DW deposited resistors were studied at a wide frequency range (1 MHz to 1.8 GHz), and the results were explained through an equivalent circuit model and impedance spectroscopy. Temperature coefficient of resistance measurements for the PTF resistors were performed between 25 and 125 °C. The results based on the percolation theory were used to explain the temperature dependence of the resistance behavior of the PTF resistors.


2001 ◽  
Vol 16 (6) ◽  
pp. 1720-1725 ◽  
Author(s):  
D. Young ◽  
H. D. Wu ◽  
R. C. Y. Auyeung ◽  
R. Modi ◽  
J. Fitz-Gerald ◽  
...  

Matrix-assisted pulsed laser evaporation direct-write (MAPLE-DW) is a laser-based method of directly writing mesoscopic patterns of electronic materials. Patterns of composite BaTiO3/SiO2/TiO2 dielectric material were written onto Pt/Au interdigitated-electrode test structures, with precise control over final dielectric properties. Scanning electron microscopy indicates random close-packed structures of BaTiO3 and SiO3 particles, with interstitial spaces partially filled with titania. Depending on the BaTiO3:silica ratio, the dielectric constant ranged from 5 to 55 and followed a 4-component logarithmic rule of mixing. This work demonstrates that the transfer process and the final material properties of MAPLE-DW oxide materials are largely decoupled.


Author(s):  
Nathan R. Schiele ◽  
Douglas B. Chrisey ◽  
David T. Corr

The ability to control a cell’s location, pattern geometry, and proximity to neighboring cells, in vitro, is highly desired to gain insight into cell-cell interactions, such as the modes of cellular signaling (direct cell contact, paracrine, or endocrine). A laser-based cell patterning technique, laser direct write, enables the precise spatial placement of living cells, with all the advantages of CAD/CAM control [1]. However, this technique is limited in usefulness due to the dependence on Matrigel® (BD Biosciences, Bedford, MA). The growth factor constituents of Matrigel® may interfere with many cellular processes under investigation and may preclude or greatly limit the utility of laser direct writing for precise cell cultures [2]. Therefore, to address this limitation, the objective of this study was to develop a Matrigel®-free laser direct writing method. Through the use of customized gelatin coatings on both the ribbon and receiving substrate, we effectively adapted the direct write technique to precisely pattern cells without the use of Matrigel®, as demonstrated with human dermal fibroblasts. The gelatin partially encapsulates the trypsinized cells on the ribbon, providing a volitization zone to protect the cells, and on the receiving substrate cushions the impact of transfer while maintaining moisture. Gelatin liquefies at 37°C, which allows it to be removed from the growth surface ensuring cellular proliferation, uninhibited by growth surface treatments. This represents a fundamental change from the original direct write technique in which cells must first form initial attachments to the ribbon via Matrigel® and then are written to a Matrigel® coated receiving substrate for their sustained growth. Additionally, we have developed a method to monitor the location of the patterned cells post-transfer to show that a gelatin coated-receiving substrate is effective as a patterning surface and ensures the registry of the pattern until cell attachment, even after the gelatin has been removed with the first growth medium application. This precise patterning technique can now be used in many biomedical applications, including those that involve cell types highly sensitive to growth factors, such as stem cells and cancer cells.


2001 ◽  
Vol 698 ◽  
Author(s):  
D. Young ◽  
R. C. Y. Auyeung ◽  
A. Piqué ◽  
D. B. Chrisey ◽  
H. Denham ◽  
...  

ABSTRACTMatrix-Assisted Pulsed Laser Evaporation Direct-Write was investigated by ultra high-speed optical microscopy. A layer of viscous fluid was irradiated with 355nm, 30 ns laser pulses in a laser-forward transfer configuration. The fluid response as a function of fluence was studied, and several distinct regimes of behavior were observed: plume, jetting and sub-threshold. However, the transition between plume and jetting regimes was not readily evident in a study of transfer pixel area vs. fluence, which may be explained by material-substrate interactions.


2000 ◽  
Vol 15 (9) ◽  
pp. 1872-1875 ◽  
Author(s):  
A. Piqué ◽  
D. B. Chrisey ◽  
J. M. Fitz-Gerald ◽  
R. A. McGill ◽  
R. C. Y. Auyeung ◽  
...  

We present a laser-based direct write technique termed matrix-assisted pulsed-laser evaporation direct write (MAPLE DW). This technique utilizes a laser transparent fused silica disc coated on one side with a composite matrix consisting of the material to be deposited mixed with a laser absorbing polymer. Absorption of laser radiation results in the decomposition of the polymer, which aids in transferring the solute to an acceptor substrate placed parallel to the matrix surface. Using MAPLE DW, complex patterns consisting of metal powders, ceramic powders, and polymer composites were transferred onto the surfaces of various types of substrates with <10 micron resolution at room temperature and at atmospheric pressure without the use of masks.


2002 ◽  
Vol 758 ◽  
Author(s):  
Craig B. Arnold ◽  
Ryan C. Wartena ◽  
Karen E. Swider-Lyons ◽  
Alberto Piqué

ABSTRACTOver the last two decades, there has been a trend towards the development of smaller and more autonomous electronic devices, yet the question of how to power these microdevices with correspondingly small power sources remains. To address this problem, we employ a laser forward-transfer process in combination with ultraviolet laser micromachining, to fabricate mesoscale electrochemical power sources, such as microbatteries and micro-ultracapacitors. This direct-write laser-engineering approach enables the deposition of battery materials (hydrous ruthenium oxide, manganese oxide, lithium cobalt oxide, etc.) under ambient temperature and atmospheric conditions, resulting in films with the desired morphological and electrochemical properties. Planar and stacked cell configurations are produced and tested for their energy storage and power delivery capabilities and exhibit favorable performance in comparison to current battery technology.


2000 ◽  
Vol 624 ◽  
Author(s):  
D. J. Ehrlich ◽  
Richard Aucoin ◽  
M. J. Burns ◽  
Kenneth Nill ◽  
Scott Silverman

ABSTRACTLaser microchemical direct write deposition and etching methods have found an essential niche in debug and design for yield of wire-bonded and flip-chip integrated circuits. Future applications should develop in package-level system modification.


Sign in / Sign up

Export Citation Format

Share Document