Single cell isolation and cultivation play an important role in studying physiology, gene expression and functions of microorganisms. A series of single-cell isolation technologies have been developed, among which single-cell ejection technology is one of the most promising. Single cell ejection technology has applied Laser Induced Forward Transfer Technique (LIFT) to isolate bacteria but the viability (or recovery rate) of cells after sorting has not been clarified in the current research progress. In this work, to keep the cells alive as much as possible, we propose a three-layer LIFT system (top layer: 25-nm aluminum film; second layer: 3 μm agar media; third layer: liquid containing bacterial) for the isolation and cultivation of single Gram-negative (
E. coli
), Gram-positive (
Lactobacillus rhamnosus
GG, LGG), and eukaryotic microorganisms (
Saccharomyces cerevisiae
). The experiment results showed that the average survival rates for ejected pure single cells were 63% for
Saccharomyces cerevisiae
, 22% for
E. coli
DH5α, and 74% for LGG. In addition, we successfully isolated and cultured the GFP expressing
E. coli
JM109 from the mixture containing complex communities of soil bacteria by fluorescence signal. The average survival rate of
E. coli
JM109 was demonstrated to be 25.3%. In this study, the isolated and cultured single colonies were further confirmed by colony PCR and sequencing. Such precise sorting and cultivation technique of live single microbial cells could be coupled with other microscopic approaches to isolate single microorganisms with specific functions, revealing their roles in the natural community.
Importance
We developed a laser induced forward transfer (LIFT) technology to accurately isolate single live microbial cells. The cultivation recovery rates of the ejected single cells were 63% for
Saccharomyces cerevisiae
, 22% for
E. coli
DH5α, and 74% for
Lactobacillus rhamnosus
GG (LGG). Coupled LIFT with fluorescent microscope, we demonstrated that single cells of GFP expressing
E. coli
JM109 were sorted according to fluorescence signal from a complex community of soil bacteria, and subsequently cultured with 25% cultivation recovery rate. This single cell live sorting technology could isolate single microbes with specific functions, revealing their roles in the natural community.