The Origin of Slow States at the Interface of a-Si:H and Silicon Nitride

1986 ◽  
Vol 70 ◽  
Author(s):  
R. A. Street ◽  
C. C. Tsai

ABSTRACTTransient photoconductivity is used to investigate the origin of slow states near the interface of a-Si:H and silicon nitride. A graded composition of the nitride layer near the interface greatly increases the density of slow states. We deduce that slow states are bulk nitride traps and that the magnitude of charge storage is largely determined by the composition dependence of the localization radius of electrons within these traps. The kinetics of charge storage and release are found to be very different and are interpreted in terms of an activation step at the interface.

Author(s):  
Younan Hua ◽  
Bingsheng Khoo ◽  
Henry Leong ◽  
Yixin Chen ◽  
Eason Chan ◽  
...  

Abstract In wafer fabrication, a silicon nitride (Si3N4) layer is widely used as passivation layer. To qualify the passivation layers, traditionally chemical recipe PAE (H3PO4+ HNO3) is used to conduct passivation pinhole test. However, it is very challenging for us to identify any pinholes in the Si3N4 layer with different layers underneath. For example, in this study, the wafer surface is Si3N4 layer and the underneath layer is silicon substrate. The traditional receipt of PAE cannot be used for passivation qualification. In this paper, we will report a new recipe using KOH solution to identify the pinhole in the Si3N4 passivation layer.


Micromachines ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 136
Author(s):  
Yiingqi Shang ◽  
Hongquan Zhang ◽  
Yan Zhang

Aimed at the problem of the small wet etching depth in sapphire microstructure processing technology, a multilayer composite mask layer is proposed. The thickness of the mask layer is studied, combined with the corrosion rate of different materials on sapphire in the sapphire etching solution, different mask layers are selected for the corrosion test on the sapphire sheet, and then the corrosion experiment is carried out. The results show that at 250 °C, the choice is relatively high when PECVD (Plasma Enhanced Chemical Vapor Deposition) is used to make a double-layer composite film of silicon dioxide and silicon nitride. When the temperature rises to 300 °C, the selection ratio of the silicon dioxide layer grown by PECVD is much greater than that of the silicon nitride layer. Therefore, under high temperature conditions, a certain thickness of silicon dioxide can be used as a mask layer for deep cavity corrosion.


1989 ◽  
Vol 4 (2) ◽  
pp. 394-398 ◽  
Author(s):  
V. S. Kaushik ◽  
A. K. Datye ◽  
D. L. Kendall ◽  
B. Martinez-Tovar ◽  
D. S. Simons ◽  
...  

Implantation of nitrogen at 150 KeV and a dose of 1 ⊠ 1018/cm2 into (110) silicon results in the formation of an amorphized layer at the mean ion range, and a deeper tail of nitrogen ions. Annealing studies show that the amorphized layer recrystallizes into a continuous polycrystalline Si3N4 layer after annealing for 1 h at 1200 °C. In contrast, the deeper nitrogen fraction forms discrete precipitates (located 1μm below the wafer surface) in less than 1 min at this temperature. The arcal density of these precipitates is 5 ⊠ 107/cm2 compared with a nuclei density of 1.6 ⊠ 105/cm2 in the amorphized layer at comparable annealing times. These data suggest that the nucleation step limits the recrystallization rate of amorphous silicon nitride to form continuous buried nitride layers. The nitrogen located within the damaged crystalline silicon lattice precipitates very rapidly, yielding semicoherent crystallites of β–Si3N4.


1983 ◽  
Vol 23 ◽  
Author(s):  
T. P. Smith ◽  
P. J. Stiles ◽  
W. M. Augustyniak ◽  
W. L. Brown ◽  
D. C. Jacobson ◽  
...  

ABSTRACTFormation of buried insulating layers and redistribution of impurities during annealing are important processes in new semiconductor device technologies. We have studied pulsed ruby laser and furnace annealing of high dose (D>1017 N/cm2) 50 KeV nitrogen implanted silicon. Using He Back scattering and channeling, X-ray diffraction, transmission electron microscopy, and infrared transmission spectroscopy, we have compared liquid and solid phase regrowth, diffusion, impurity segregation and nitride formation. As has been previously reported, during furnace annealing at or above 1200C nitrogen redistributes and forms a polycrystalline silicon nitride (Si3N4 ) layer. [1–4] In contrast, pulsed laser annealing produces a buried amorphous silicon nitride layer filled with voids or bubbles below a layer of polycrystalline silicon.


1980 ◽  
Vol 5 (4-5) ◽  
pp. 267-288 ◽  
Author(s):  
G.N. Babini ◽  
A. Bellosi ◽  
P. Vincenzini
Keyword(s):  

2001 ◽  
Vol 189-191 ◽  
pp. 120-125 ◽  
Author(s):  
J. Marchi ◽  
José Carlos Bressiani ◽  
Ana Helena A. Bressiani

Sign in / Sign up

Export Citation Format

Share Document