Anisotropic and Selective Reactive Ion Etching of SiC in CHF3 and Oxygen Plasma

1986 ◽  
Vol 76 ◽  
Author(s):  
W-S. Pan ◽  
A. J. Steckl

ABSTRACTThe use of CHF3 plus oxygen plasma to achieve selective and anisotropic patterning of SiC thin films in the reactive ion etching (RIE) mode is reported. Experiments were performed using various levels of oxygen percentage (from zero to 90%), pressure (from 20 to 300 mTorr) and power (from 100W to 350W). Anisotropic etching of SiC with a vertical-to-lateral etch ratio in excess of 8:1 was measured for a CHF3 + 75%02 mixture at 20mT pressure and 200W RF power. Under these conditions, the SiC etch rate was measured to be 400 A/min and the selectivity over Si was approximately 2.2:1. The effect of the cathode DC potential and emission intensity of various species in the plasma on the SiC and Si etch rates is considered.

1993 ◽  
Vol 310 ◽  
Author(s):  
Dilip P. Vijay ◽  
Seshu B. Desu ◽  
Wei Pan

AbstractIn this work, we have identified a suitable etch gas (CCI2,F2 ) for Reactive Ion Etching (RIE) of PZT thin films on RuO2 electrodes. The etch rate and anisotropy have been studied as a function of etching conditions. The effect of gas pressure, RF power and O2 concentration on the etch rate have been determined. It was found that ion bombardment effects are primarily responsible for the etching of both PZT and RuO2 thin films. Etch rates of the order of 20-30 nm/min were obtained for PZT thin films under low gas pressure and high RF power conditions. The etch residues and the relative etch rates of the components of the PZT solid solution were determined using XPS. The results show that the etching of PbO is the limiting factor in the etch process. For RuO2 thin films, etch rates of the order of 8-10 nm/min were obtained when O2 was added to the etch gas.


1991 ◽  
Vol 240 ◽  
Author(s):  
C. P. Chen ◽  
K. S. Din ◽  
F. S. Huang

ABSTRACTIn the self-alignment technology for GaAs MESFET, the pattern technique for refractory suicide gate is needed. Reactive ion etching (RIE) of TaSix on GaAs has been performed in a mixture of CF4 and O2 Etching properties have been studied as function of oxygen percentage, total pressure and power. The samples were then examined in Scanning electron microscopy (SEM) and Auger electron spectroscopy (AES) to understand the surface morphology and constitution. It is found that the etch rate of TaSixincreased with increasing oxygen percentage initially, reached a maximum value near 10∼15% O2, then started to decrease with increasing oxygen at applied power 100 watt, pressure 50 mtorr, and total gas flow 40 seem. This etch rate also increases with RF power and total pressure in CF4 + O2 15% gas at gas flow rate 40 sccm. For GaAs etching, the rate is independent of oxygen percentage. This etch rate of GaAs also increases with power, but decreases with total pressure. Meanwhile, the SEM micrograph shows no undercut for sample after RIE at the applied power 140 watt with the pressure of 20 mtorr.


2014 ◽  
Vol 909 ◽  
pp. 91-94
Author(s):  
Jun Gou ◽  
Hui Ling Tai ◽  
Jun Wang ◽  
De En Gu ◽  
Xiong Bang Wei ◽  
...  

A high selectivity patterning technology of vanadium oxide (VOx) thin film was suggested in this paper. VOxthin film was etched through a photoresist (PR) mask using Cl/N based gases in a reactive ion etching (RIE) system. Taguchi method was used for process design to identify factors that influence the patterning and find optimum process parameters. Experimental results suggested that RF power was the largest contribution factor for VOxetch rate, PR selectivity and uniformity on 6 inch diameter wafer. Uniformity and PR selectivity were improved by introducing a small amount of N2. High resolution and low roughness patterning transfer was achieved with a non uniformity of 2.4 %, an VOxetch rate of 74 nm/min, a PR selectivity of 0.96, a Si3N4selectivity of 5 and a SiO2selectivity of 10.


Polymers ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 1955
Author(s):  
Marco Cen-Puc ◽  
Andreas Schander ◽  
Minerva G. Vargas Gleason ◽  
Walter Lang

Polyimide films are currently of great interest for the development of flexible electronics and sensors. In order to ensure a proper integration with other materials and PI itself, some sort of surface modification is required. In this work, microwave oxygen plasma, reactive ion etching oxygen plasma, combination of KOH and HCl solutions, and polyethylenimine solution were used as surface treatments of PI films. Treatments were compared to find the best method to promote the adhesion between two polyimide films. The first selection of the treatment conditions for each method was based on changes in the contact angle with deionized water. Afterward, further qualitative (scratch test) and a quantitative adhesion assessment (peel test) were performed. Both scratch test and peel strength indicated that oxygen plasma treatment using reactive ion etching equipment is the most promising approach for promoting the adhesion between polyimide films.


2005 ◽  
Vol 483-485 ◽  
pp. 765-768 ◽  
Author(s):  
Jun Hai Xia ◽  
E. Rusli ◽  
R. Gopalakrishnan ◽  
S.F. Choy ◽  
Chin Che Tin ◽  
...  

Reactive ion etching of SiC induced surface damage, e.g., micromasking effect induced coarse and textured surface, is one of the main concerns in the fabrication of SiC based power devices [1]. Based on CHF3 + O2 plasma, 4H-SiC was etched under a wide range of RF power. Extreme coarse and textured etched surfaces were observed under certain etching conditions. A super-linear relationship was found between the surface roughness and RF power when the latter was varied from 40 to 160 W. A further increase in the RF power to 200 W caused the surface roughness to drop abruptly from its maximum value of 182.4 nm to its minimum value of 1.3 nm. Auger electron spectroscopy (AES) results revealed that besides the Al micromasking effect, the carbon residue that formed a carbon-rich layer, could also play a significant role in affecting the surface roughness. Based on the AES results, an alternative explanation on the origin of the coarse surface is proposed.


1986 ◽  
Vol 4 (3) ◽  
pp. 440-442 ◽  
Author(s):  
H. Buhay ◽  
K. J. Kogler ◽  
B. L. Whitehead ◽  
R. C. Tiberio

2009 ◽  
Author(s):  
Jun Gou ◽  
Zhi-ming Wu ◽  
Hui-ling Tai ◽  
Kai Yuan

1990 ◽  
Vol 216 ◽  
Author(s):  
D.C. La Tulipe ◽  
D.J. Frank ◽  
H. Munekata

ABSTRACT-Although a variety of novel device proposals for GaSb/(Al,Ga)Sb/InAs heterostructures have been made, relatively little is known about processing these materials. We have studied the reactive ion etching characteristics of GaSb, (AI,Ga)Sb, and InAs in both methane/ hydrogen and chlorine gas chemistries. At conditions similar to those reported elsewhere for RIE of InP and GaAs in CH4/H2, the etch rate of (AI,Ga)Sb was found to be near zero, while GaSb and InAs etched at 200Å/minute. Under conditions where the etch mechanism is primarily physical sputtering, the three compounds etch at similar rates. Etching in Cl2 was found to yield anisotropic profiles, with the etch rate of (AI,Ga)Sb increasing with Al mole fraction, while InAs remains unetched. Damage to an InAs “stop layer” was investigated by sheet resistance and mobility measurements. These etching techniques were used to fabricate a novel InAs-channel FET composed of these materials. Several scanning electron micrographs of etching results are shown along with preliminary electrical characteristics.


1994 ◽  
Vol 361 ◽  
Author(s):  
W. Pan ◽  
C.L. Thio ◽  
S.B. Desu ◽  
Cheewon Chung

ABSTRACTReactive ion etching damage to sputtered Pt/PZT/Pt ferroelectric capacitors was studied using Ar and CHCIFCF3 etch gases. Electrical properties, hysteresis, fatigue, and leakage current of PZT capacitors, before and after etching, were compared to examine the etching damage. It is found that the damage effects depend on etching time and are mainly due to the physical bombardment effect. The PZT capacitors etched with CHCIFCF3 plasma showed less damage than those etched in Ar plasma. The electric properties of etched Pt/PZT/Pt capacitors are recovered by annealing at 400 °C for 30min.


Sign in / Sign up

Export Citation Format

Share Document