Status of 4H-SiC Substrate and Epitaxial Materials for Commercial Power Applications

2004 ◽  
Vol 815 ◽  
Author(s):  
A.R. Powell ◽  
J.J. Sumakeris ◽  
R.T. Leonard ◽  
M.F. Brady ◽  
St.G. Müller ◽  
...  

AbstractThe performance enhancements offered by the next generation of SiC high power devices offer potential for enormous growth in SiC power device markets in the next few years. For this growth to occur, it is imperative that substrate and epitaxial material quality increases to meet the needs of the targeted applications. We will discuss the status and requirements for SiC substrates and epitaxial material for power devices such as Schottky and PiN diodes. For the SiC Schottky device where current production is approaching 50 amp devices, there are several material aspects that are key. These include; wafer diameter (3-inch and 100-mm), micropipe density (<0.3 cm−2 for 3-inch substrates and 16 cm−2 for 100-mm substrates), epitaxial defect densities (total electrically active defects <1.5 cm−2), epitaxial doping and epitaxial thickness uniformity. For the PiN diodes the major challenge is the degradation of the Vf characteristics due to the introduction of stacking faults during the device operation. We have demonstrated that the stacking faults are often generated from basal plane dislocations in the active region of the device. Additionally we have demonstrated that by reducing the basal plane dislocation density, stable PiN diodes can be produced. At present typical basal plane dislocation densities in our epitaxial layers are 100 to 500 cm−2; however, we have achieved basal plane dislocation densities as low as 4 cm−2 in epitaxial layers grown on 8° off-axis 4H-SiC substrates.

2006 ◽  
Vol 527-529 ◽  
pp. 371-374 ◽  
Author(s):  
Ze Hong Zhang ◽  
A.E. Grekov ◽  
Priyamvada Sadagopan ◽  
S.I. Maximenko ◽  
Tangali S. Sudarshan

The nucleation sites of stacking faults (SFs) during forward current stress operation of 4H-SiC PiN diodes were investigated by the electron beam induced current (EBIC) mode of scanning electron microscopy (SEM), and the primary SF nucleation sites were found to be basal plane dislocations (BPDs). Damage created on the diode surface also acts as SF nucleation sites. By using a novel BPD-free SiC epilayer, and avoiding surface damage, PiN diodes were fabricated which did not exhibit SF formation under current stressing at 200A/cm2 for 3 hours.


2014 ◽  
Vol 778-780 ◽  
pp. 851-854 ◽  
Author(s):  
Chiharu Ota ◽  
Johji Nishio ◽  
Kazuto Takao ◽  
Takashi Shinohe

In this paper, we found origin of VFdegradation of SiC bipolar devices other than a basal plane dislocation (BPD) in the SiC substrate. A VFdegradation of the 4H-SiC PiN diodes with low-BPD wafers was evaluated and its origins were discussed. Some diodes suffered VFdegradation, even though they were fabricated on BPD-free area. PL mapping, TEM image, and optical observation after KOH etching showed that there were Shockley stacking faults and combined etch-pits arrays, which were presumed to be caused by the device process.


2012 ◽  
Vol 717-720 ◽  
pp. 387-390 ◽  
Author(s):  
Robert E. Stahlbush ◽  
Qing Chun Jon Zhang ◽  
Anant K. Agarwal ◽  
Nadeemullah A. Mahadik

The effects of Shockley stacking faults (SSFs) that originate from half loop arrays (HLAs) on the forward voltage and reverse leakage were measured in 10 kV 4H-SiC PiN diodes. The presence of HLAs and basal plane dislocations in each diode in a wafer was determined by ultraviolet photoluminescence imaging of the wafer before device fabrication. The SSFs were expanded by electrical stressing under forward bias of 30 A/cm2, and contracted by annealing at 550 °C. The electrical stress increased both the forward voltage and reverse leakage. Annealing returned the forward voltage and reverse leakage to nearly their original behavior. The details of SSF expansion and contraction from a HLA and the effects on the electrical behavior of the PiN diodes are discussed.


2018 ◽  
Vol 924 ◽  
pp. 147-150
Author(s):  
Jörg Pezoldt ◽  
Andrei Alexandrovich Kalnin

A model based on the generation and recombination of defect was developed to describe the stability of stacking faults and basal plane dislocation loops in crystals with layered polytype structures. The stability of the defects configuration was analysed for stacking faults surrounded by Shockley and Frank partial dislocation as well as Shockley dislocation dipoles with long range elastic fields. This approach allows the qualitative prediction of defect subsystems in polytype structure in external fields.


2018 ◽  
Vol 57 (4S) ◽  
pp. 04FR07 ◽  
Author(s):  
Shohei Hayashi ◽  
Tamotsu Yamashita ◽  
Junji Senzaki ◽  
Masaki Miyazato ◽  
Mina Ryo ◽  
...  

Author(s):  
Anant Agarwal ◽  
Sumi Krishnaswami ◽  
James Richmond ◽  
Craig Capell ◽  
Sei Hyung Ryu ◽  
...  

2011 ◽  
Vol 679-680 ◽  
pp. 59-62 ◽  
Author(s):  
Stefano Leone ◽  
Yuan Chih Lin ◽  
Franziska Christine Beyer ◽  
Sven Andersson ◽  
Henrik Pedersen ◽  
...  

The epitaxial growth at 100 µm/h on on-axis 4H-SiC substrates is demonstrated in this study. Chloride-based CVD, which has been shown to be a reliable process to grow SiC epitaxial layers at rates above 100 µm/h on off-cut substrates, was combined with silane in-situ etching. A proper tuning of C/Si and Cl/Si ratios and the combination of different chlorinated precursors resulted in the homoepitaxial growth of 4H-SiC on Si-face substrates at high rates. Methyltrichlorosilane, added with silane, ethylene and hydrogen chloride were employed as precursors to perform epitaxial growths resulting in very low background doping concentration and high quality material, which could be employed for power devices structure on basal-plane-dislocation-free epitaxial layers.


2004 ◽  
Vol 815 ◽  
Author(s):  
R. E. Stahlbush ◽  
M. E. Twigg ◽  
J. J. Sumakeris ◽  
K. G. Irvine ◽  
P. A. Losee

AbstractThe early development of stacking faults in SiC PiN diodes fabricated on 8° off c-axis 4H wafers has been studied. The 150μm drift region and p-n junction were epitaxially grown. The initial evolution of the stacking faults was examined by low injection electroluminescence using current-time product steps as low as 0.05 coul/cm2. The properties of the dislocations present before electrical stressing were determined based on previously observed differences of Si-core and C-core partial dislocations and the patterns of stacking fault expansion. The initial stacking fault expansion often forms a chain of equilateral triangles and at higher currents and/or longer times these triangles coalesce. All of the faulting examined in this paper originated between 10 and 40 μm below the SiC surface. The expansion rate of the bounding partial dislocations is very sensitive to the partials' line directions, their core types and the density of kinks. From these patterns it is concluded that the stacking faults originate from edge-like basal plane dislocations that have Burgers vectors either parallel or anti-parallel to the off-cut direction. Evidence for dislocation conversions between basal-plane and threading throughout the epitaxial drift region is also presented.


2008 ◽  
Vol 600-603 ◽  
pp. 349-352 ◽  
Author(s):  
Norihiro Hoshino ◽  
Michio Tajima ◽  
M. Naitoh ◽  
Eiichi Okuno ◽  
Shoichi Onda

We investigated the expansion of single Shockley stacking faults (SSFs) in a 4H-SiC epitaxial layer under high-intensity scanning laser beam during room temperature photoluminescence mapping, which is similar to the degradation of bipolar pin diodes during forward current injection. In an epitaxial layer on an 8 off-axis (0001) substrate, the SSF-related intensity patterns induced by scanning high-intensity laser beam were classified into two types. The first one was a triangular pattern and the second a pattern which expanded in accordance with the motion of the scanning laser beam. The origins of the SSFs responsible for both patterns are presumably due to the preexisting basal plane dislocations and the dislocation-loops on the basal plane in the epitaxial layer, respectively. On the other hand, most of the SSF-expansion in on-axis (11 2 0) epitaxial layers were similar to the second type in the (0001) epitaxial layer. We, therefore, suggest that the dislocation-loops, which were located close to the surface, were dominant nucleation-sites of the SSFs in the (11 2 0) epitaxial layers.


Sign in / Sign up

Export Citation Format

Share Document