omparisons of Silicide Formation by Rapid Thermal Annealing and Conventional Furnace Annealing
ABSTRACTSilicide formation induced by rapid thermal annealing (RTA) and conventional furnace annealing (CFA) in bilayers of sequentially deposited films of amorphous silicon and polycrystalline Co or Ni is studied with RBS, X-ray diffraction and TEM. Particular attention is paid to the reliability of the RTA temperature measurements in the study of the growth kinetics of the first interfacial compound, Co2Si and Ni2Si, for both RTA and CFA. It is found that the same diffusion-controlled kinetics applies for the silicide formation by RTA in argon and CFA in vacuum with a common activation energy of 2.1+0.2eV for Co2Si and 1.3+0.2eV for Ni Si. Co and Ni atoms are the dominant diffusing species; during silicide formation by both RTA and CFA. The microstructures of the Ni-silicide formed by the two annealing techniques, however, differs considerably from each other, as revealed by cross-sectional TEM studies.