Iridium Silicide Formation by Rapid Thermal Annealing

1994 ◽  
Vol 299 ◽  
Author(s):  
T. Rodriguez ◽  
H. Wolters ◽  
A. Almendra ◽  
J. Sanz-Maudes ◽  
M.F. Da Silva ◽  
...  

AbstractIridium silicides formation by rapid thermal annealing (RTA) under vacuum at several temperatures in the range of 350 to 650°C has been investigated. The substrates and the silicide films were analyzed by Rutherford backscattering spectrometry (RBS) and Auger electron spectroscopy (AES). At 350°C, no distinguishable phase was detected for 240 seconds of annealing time. At 400°C, for processing time up to 45 seconds only Ir1Si1 was formed, for longer processing time Ir1Si1.75 was formed too. At higher temperatures even for very short processing time, Ir1Si1.75 was formed. Ir, Ir1Si1 and Ir1Si1.75 were present simultaneously if the iridium film was thick enough and the processing time was long enough too. For thin iridium layers, the Ir1Si1 formed was totally converted to Ir1Si1.75, if the annealing time was long enough. Formation rates were observed to be three to five orders of magnitude faster than the reported for furnace annealing.

1994 ◽  
Vol 299 ◽  
Author(s):  
M. Fernandez ◽  
T. Rodriguez ◽  
A. Almendra ◽  
J. Jimenez-Leube ◽  
H. Wolters

AbstractIridium silicide formation by rapid thermal annealing (RTA) in an Ar atmosphere or under vacuum has been investigated. The evolution of the silicide front and the identification of the phases were monitored by Auger Electron Spectroscopy (AES) and Rutherford Backscattering Spectrometry (RBS). Oxygen was incorporated during the RTA process in an Ar atmosphere. The oxygen effect is to slow down the silicide formation and eventually to stop it. In all the cases, the oxygen piled-up at the iridium-iridium silicide interface. No distinguishable phase was formed by RTA in an Ar atmosphere. No oxygen contarsi'nation was detected when the RTA was performed under a vacuum lower than 2×10−5 Torr. In this case Ir1Si1 and Ir1Si1.75 phases were formed.


1987 ◽  
Vol 92 ◽  
Author(s):  
E. Ma ◽  
M. Natan ◽  
B.S. Lim ◽  
M-A. Nicolet

ABSTRACTSilicide formation induced by rapid thermal annealing (RTA) and conventional furnace annealing (CFA) in bilayers of sequentially deposited films of amorphous silicon and polycrystalline Co or Ni is studied with RBS, X-ray diffraction and TEM. Particular attention is paid to the reliability of the RTA temperature measurements in the study of the growth kinetics of the first interfacial compound, Co2Si and Ni2Si, for both RTA and CFA. It is found that the same diffusion-controlled kinetics applies for the silicide formation by RTA in argon and CFA in vacuum with a common activation energy of 2.1+0.2eV for Co2Si and 1.3+0.2eV for Ni Si. Co and Ni atoms are the dominant diffusing species; during silicide formation by both RTA and CFA. The microstructures of the Ni-silicide formed by the two annealing techniques, however, differs considerably from each other, as revealed by cross-sectional TEM studies.


1998 ◽  
Vol 525 ◽  
Author(s):  
B. Claflin ◽  
M. Binger ◽  
G. Lucovsky

ABSTRACTThe chemical stability of the compound metals TiNx and WNx on SiO2 and SiO2/Si3N4 (ON) dielectric stacks is studied by on-line Auger electron spectroscopy (AES) following sequential rapid thermal annealing treatments of 15 - 180 s up to 850 °C. The TiNx/SiO2 interface reacts at 850 °C and the reaction is kinetics driven. The TiNx/Si3N4 interface is more stable than TiNx/SiO2 even after a 180 s anneal at 850 °C. WNx is stable below 650 °C both on SiO2 and Si3N4, but above this temperature the film changes, possibly due to crystallization or interdiffusion. The changes in the WNx film are not controlled by kinetics. The compound metals are chemically more stable at elevated temperatures than pure Ti or W on SiO2.


1989 ◽  
Vol 146 ◽  
Author(s):  
E.J. Yun ◽  
H.G. Chun ◽  
K. Jung ◽  
D.L. Kwong ◽  
S. Lee

ABSTRACTIn this paper, the interactions of sputter-deposited Ti on SiO2 substrates during rapid thermal annealing in nitrogen at 550°C - 900°C for 10 - 60 s have been systematically studied using X-ray diffraction, Auger electron spectroscopy, transmission electron diffraction, TEM & cross-sectional TEM, and sheet resistance measurements.


2002 ◽  
Vol 716 ◽  
Author(s):  
G.Z. Pan ◽  
E.W. Chang ◽  
Y. Rahmat-Samii

AbstractWe comparatively studied the formation of ultra thin Co silicides, Co2Si, CoSi and CoSi2, with/without a Ti-capped and Ti-mediated layer by using rapid thermal annealing in a N2 ambient. Four-point-probe sheet resistance measurements and plan-view electron diffraction were used to characterize the silicides as well as the epitaxial characteristics of CoSi2 with Si. We found that the formation of the Co silicides and their existing duration are strongly influenced by the presence of a Ti-capped and Ti-mediated layer. A Ti-capped layer promotes significantly CoSi formation but suppresses Co2Si, and delays CoSi2, which advantageously increases the silicidation-processing window. A Ti-mediated layer acting as a diffusion barrier to the supply of Co suppresses the formation of both Co2Si and CoSi but energetically favors directly forming CoSi2. Plan-view electron diffraction studies indicated that both a Ti-capped and Ti-mediated layer could be used to form ultra thin epitaxial CoSi2 silicide.


1996 ◽  
Vol 11 (1) ◽  
pp. 229-235 ◽  
Author(s):  
E. Cattaruzza ◽  
R. Bertoncello ◽  
F. Trivillin ◽  
P. Mazzoldi ◽  
G. Battaglin ◽  
...  

Silica glass was implanted with chromium at the energy of 35 and 160 keV and at fluences varying from 1 × 1016 to 11 × 1016 ions cm−2. In a set of chromium-implanted samples significant amounts of carbon were detected. Samples were characterized by x-ray photoelectron spectroscopy, x-ray-excited Auger electron spectroscopy, secondary ion mass spectrometry, and Rutherford backscattering spectrometry. Chromium silicide and chromium oxide compounds were observed; the presence of carbon in the implanted layers induces the further formation of chromium carbide species. Thermodynamic considerations applied to the investigated systems supply indications in agreement with the experimental evidences.


1992 ◽  
Vol 263 ◽  
Author(s):  
B. Holländer ◽  
R. Butz ◽  
S. Mantl

ABSTRACTThe interdiffusion in MBE-grown Si/Si1−xGex superlattices was measured by Rutherford backscattering spectrometry. The superlattices consisted of 5 periods of 100 !A Si and 100 !A Si1−xGex layers with Ge concentrations, x, between 0.20 and 0.70. Both, asymmetrically strained superlattices, grown on Si(100), as well as symmetrically strained superlattices, grown on relaxed Si1−y.Gey buffer layers were investigated. Rapid thermal annealing in the temperature range between 900°C and 1125°C leads to significant interdiffusion between the individual layers, indicated by a decrease of the amplitudes of the backscattering spectra. Interdiffusion coefficients were deduced using a Fourier algorithm. The interdiffusion coefficients follow an Arrhenius law for a given Ge concentration. The interdiffusivity increases significantly with increasing Ge concentration.


1989 ◽  
Vol 147 ◽  
Author(s):  
Samuel Chen ◽  
S.-Tong Lee ◽  
G. Braunstein ◽  
G. Rajeswaran ◽  
P. Fellinger

AbstractDefects induced by ion implantation and subsequent annealing are found to either promote or suppress layer intermixing in Ill-V compound semiconductor superlattices (SLs). We have studied this intriguing relationship by examining how implantation and annealing conditions affect defect creation and their relevance to intermixing. Layer intermixing has been induced in SLs implanted with 220 keV Si+ at doses < 1 × 1014 ions/cm2 and annealed at 850°C for 3 hrs or 1050°C for 10 s. Upon furnace annealing, significant Si in-diffusion is observed over the entire intermixed region, but with rapid thermal annealing layer intermixing is accompanied by negligible Si movement. TEM showed that the totally intermixed layers are centered around a buried band of secondary defects and below the Si peak position. In the nearsurface region layer intermixing is suppressed and is only partially completed at ≤1 × 1015 Si/cm2. This inhibition is correlated to a loss of the mobile implantation-induced defects, which are responsible for intermixing.


1987 ◽  
Vol 62 (10) ◽  
pp. 4319-4321 ◽  
Author(s):  
R. Pantel ◽  
D. Levy ◽  
D. Nicolas ◽  
J. P. Ponpon

Sign in / Sign up

Export Citation Format

Share Document