scholarly journals INFLUENCE OF TOOL ROTATIONAL SPEED AND AXIAL LOAD IN FRICTION STIR WELDING (FSW) OF HIGH STRENGTH ALUMINUM ALLOYS

2017 ◽  
Vol 06 (02) ◽  
pp. 114-120
Author(s):  
M. S. Mahany .
2000 ◽  
Vol 40 (Suppl) ◽  
pp. S15-S19 ◽  
Author(s):  
Kazuhiro Nakata ◽  
Young Gon Kim ◽  
Masao Ushio ◽  
Takenori Hashimoto ◽  
Shigetoshi Jyogan

Author(s):  
Anganan K ◽  
Narendran RJ ◽  
Naveen Prabhu N ◽  
Rahul Varma R ◽  
Sivasubramaniyam R

Friction stir welding (FSW) is an innovative solid state joining technique and has been employed in industries for joining aluminum, magnesium, zinc and copper alloys. The FSW process parameters such as tool, rotational speed, welding speed, axial force, etc play major role in deciding the weld quality. A mathematical modeling was developed based on experiments to predict the tensile strength of dissimilar FSW aluminum alloys. The maximum tensile strength of 210 MPa can be obtained at the tool rotational speed of 1100 rpm, welding speed of 35mm/min and an axial load of 7 kN is the Optimum welding parameters.


Author(s):  
K. Anganan ◽  
R.J . Narendran ◽  
N Naveen Prabhu ◽  
R Rahul Varma ◽  
R Sivasubramaniyam

Friction stir welding (FSW) is an innovative solid state joining technique and has been employed in industries for joining aluminum, magnesium, zinc and copper alloys. The FSW process parameters such as tool, rotational speed, welding speed, axial force, etc play major role in deciding the weld quality. A mathematical modeling was developed based on experiments to predict the tensile strength of dissimilar FSW aluminum alloys. The maximum tensile strength of 210 MPa can be obtained at the tool rotational speed of 1100 rpm, welding speed of 35mm/min and an axial load of 7 kN is the Optimum welding parameters.


2015 ◽  
Vol 787 ◽  
pp. 350-354 ◽  
Author(s):  
V. Saravanan ◽  
Nilotpal Banerjee ◽  
R. Amuthakkannan ◽  
S. Rajakumar

Dissimilar friction stir welding was carried out between AA6061-T6 and AA7075-T6 aluminum alloys. The effect of tool rotational speed and welding speed, on microstructure and mechanical properties were analysed in detail and presented. The tool rotational speed, welding speed, axial load and shoulder diameter to pin diameter (D/d ratio) were the parameters taken into consideration for the study. It was concluded that the tensile strength and hardness value gradually increased with the increase in tool rotational speed and decreased with the further increase in tool rotational speed. The microstructural analysis was carried out for the high strength specimen at various zones. Fine grain size and proper material mixing were observed in the stir zone. Fractographic image of the fractured surface for the high strength joint was presented and discussed. The joint fabricated with tool rotational speed 1000 RPM, welding speed 25 mm/min, axial load 6 kN and D/d ratio 3 exhibited superior mechanical properties when compared to all other joints.


Sign in / Sign up

Export Citation Format

Share Document