scholarly journals Occurrence features of Rip current at Ha My (Dien Ban district) and Tam Thanh (Tam Ky city) beaches, Quang Nam province

2019 ◽  
Vol 19 (4A) ◽  
pp. 43-53
Author(s):  
Le Dinh Mau ◽  
Nguyen Van Tuan ◽  
Nguyen Chi Cong ◽  
Tran Van Binh ◽  
Pham Ba Trung ◽  
...  

Rip current is a relatively strong, narrow current flowing outward from the beach through the surf zone and presenting a hazard to swimmers. This paper presents some occurrence features of Rip current at main swimming beaches in Quang Nam province, Central Vietnam. Study results show that most of swimming beaches along Quang Nam province coast are directly opposed to open sea and strongly affected by swell. Therefore, Rip current system can occur at any time in the year with large dimension and intensity. During Northeast monsoon (November to March) beach morphology is considerably changed by strong wave action, thus the strongest rip current is formed. However, in this period careful swimmers can easily identify where that rip current occurs along the beach. During the transition period from Northeast monsoon to Southwest monsoon (April to May) wave energy is reduced, thus Rip current intensity is also decreased. During Southwest monsoon (June to August) wave energy is not strong and beach is accreted, therefore some Rip currents remain at reasonable morphology places along the beach. During the transition period from Southwest monsoon to Northeast monsoon (September to October) Rip current can occur at deep places along the beach with characteristics of narrow dimension, thus causing more danger to swimmer. Especially, dangerous rip current is caused by swell which comes from active region of tropical cyclone in open sea. In this period wave field in the nearshore region is not rough, thus most of swimmers are not cautious when swimming at dangerous rip current places.

2019 ◽  
Vol 19 (3B) ◽  
pp. 113-124
Author(s):  
Nguyen Chi Cong ◽  
Le Dinh Mau ◽  
Nguyen Van Tuan ◽  
Nguyen Thi Thuy Dung ◽  
Phan Thanh Bac ◽  
...  

This paper presents modelling results of rip currents on the main beaches along coastal Quang Nam province including Ha My, Binh Minh, Tam Thanh and Rang beaches during two typical wind seasons: Northeast monsoon (Northeast wind direction, wind levels: 4, 5, 6) and Southwest monsoon (Southeast wind direction, wind levels: 4, 5) using Mike 21 model. Calculation results show that during the Northeast monsoon, the rip current formed in all beaches. In the scenario of level 4 of wind speed, average rip speed was about 40–50 cm/s. In particular, at Tam Thanh beach area, the rip was a typical one with the components such as feeder current, rip neck and rip head. With the level 5 of wind field, the formation of the rip was clearer, the speed of the rip was stronger, average value was about 50–60 cm/s. Meanwhile, with the level 6 of wind field, the typical rip structure was broken, creating local eddies or longshore currents at some positions, but strengthened at other positions. During the Southwest monsoon, the rip current did not form at the beaches and the longshore currents were dominant.


2017 ◽  
Author(s):  
Guido Benassai ◽  
Pietro Aucelli ◽  
Giorgio Budillon ◽  
Massimo De Stefano ◽  
Diana Di Luccio ◽  
...  

Abstract. The prediction of the formation, spacing and location of rip currents is a scientific challenge that can be achieved by means of different complementary methods. In this paper the analysis of numerical and experimental data, including UAV observation, allowed to detect the presence of rip currents and rip channels at the mouth of Sele river, in the Gulf of Salerno, southern Italy. The dataset used to analyze these phenomena consisted of two different bathymetric surveys, a detailed sediment 5 analysis and a set of high-resolution wave numerical simulations, completed with satellite and UAV observation. The grain size trend analysis and the numerical simulations allowed to identify the rip current system, forced by topographically constrained channels incised on the seabed, which were detected by high resolution bathymetric surveys. The study evidenced that on the coastal area of the Sele mouth grain-size trends are controlled by the contribution of fine sediments, which exhibit suspended transport pathways due to rip currents and longshore currents. The results obtained were confirmed by satellite and UAV 10 observations in different years.


2021 ◽  
Vol 21 (7) ◽  
pp. 2075-2091
Author(s):  
Elias de Korte ◽  
Bruno Castelle ◽  
Eric Tellier

Abstract. A Bayesian network (BN) approach is used to model and predict shore-break-related injuries and rip-current drowning incidents based on detailed environmental conditions (wave, tide, weather, beach morphology) on the high-energy Gironde coast, southwest France. Six years (2011–2017) of boreal summer (15 June–15 September) surf zone injuries (SZIs) were analysed, comprising 442 (fatal and non-fatal) drownings caused by rip currents and 715 injuries caused by shore-break waves. Environmental conditions at the time of the SZIs were used to train two separate Bayesian networks (BNs), one for rip-current drownings and the other one for shore-break wave injuries. Each BN included two so-called “hidden” exposure and hazard variables, which are not observed yet interact with several of the observed (environmental) variables, which in turn limit the number of BN edges. Both BNs were tested for varying complexity using K-fold cross-validation based on multiple performance metrics. Results show a poor to fair predictive ability of the models according to the different metrics. Shore-break-related injuries appear more predictable than rip-current drowning incidents using the selected predictors within a BN, as the shore-break BN systematically performed better than the rip-current BN. Sensitivity and scenario analyses were performed to address the influence of environmental data variables and their interactions on exposure, hazard and resulting life risk. Most of our findings are in line with earlier SZI and physical hazard-based work; that is, more SZIs are observed for warm sunny days with light winds; long-period waves, with specifically more shore-break-related injuries at high tide and for steep beach profiles; and more rip-current drownings near low tide with near-shore-normal wave incidence and strongly alongshore non-uniform surf zone morphology. The BNs also provided fresh insight, showing that rip-current drowning risk is approximately equally distributed between exposure (variance reduction Vr=14.4 %) and hazard (Vr=17.4 %), while exposure of water user to shore-break waves is much more important (Vr=23.5 %) than the hazard (Vr=10.9 %). Large surf is found to decrease beachgoer exposure to shore-break hazard, while this is not observed for rip currents. Rapid change in tide elevation during days with large tidal range was also found to result in more drowning incidents. We advocate that such BNs, providing a better understanding of hazard, exposure and life risk, can be developed to improve public safety awareness campaigns, in parallel with the development of more skilful risk predictors to anticipate high-life-risk days.


2020 ◽  
Vol 20 (4) ◽  
pp. 405-416
Author(s):  
Le Dinh Mau ◽  
Vlasova G. A. ◽  
Demenok M. N. ◽  
Pham Sy Hoan ◽  
Nguyen Thi Thuy Dung ◽  
...  

This paper presents the distribution features of observed meteorological parameters in Truong Sa archipelago area including wind, tropical cyclone, and average values of solar radiation, air temperature, air humidity, rainfall. Observed data were collected from Truong Sa island hydro-meteorological station. In particular, data of tropical cyclones affecting Truong Sa archipelago area were collected from the websites http://www.jma.go.jp/jma/jma-eng/jma-center/(Japan). Study results show that the main meteorological parameters in Truong Sa archipelago area are affected by solar radiation and monsoonal wind regimes in East Asia region which are Northeast monsoon occurring from November to April and Southwest monsoon occurring from June to September. Transition periods are May and October. Tropical cyclones occur mainly in November–December, maximum wind speed was 64 m/s in typhoon HAIYAN (November 2013). The highest average solar radiation occurs in April (277 hours), the lowest in January (181 hours). The highest average air temperature occurs in April (29.5oC), the lowest in January (26.6oC). The highest average rainfall occurs in November (341 mm), the lowest in March (62 mm). The highest average air humidity occurs in November–December (85%), the lowest in April–May (79%). The highest average water evaporation occurs in March (129 mm), the lowest in December (87 mm).


Author(s):  
Zhangping Wei ◽  
Robert A. Dalrymple

This study investigates surf zone wave heating due to the dissipation of breaking wave energy by using the Smoothed Particle Hydrodynamics method. We evaluate the surf zone wave heating by examining the increase of internal energy of the system, which is computed based on the conservation of energy. The equivalent temperature profile is calculated based on a simple conversion relationship between energy and temperature. We first examine the surf zone wave heating based on long-crested wave breaking over a planar beach, and we consider spilling breaker and weakly plunging breaker. Numerical results show that breaking of water waves in the surf zone increases the internal energy of water body. Furthermore, the dissipation of incident wave energy is fully converted into the internal energy in a thermally isolated system, confirming the energy conservation of the present numerical approach. It is further found that the long-crested wave breaking generates undertow, which transports the generated wave heating from the surf zone to deep waters. We further carry out numerical experiments to examine surf zone wave heating due to short-crested wave breaking over a beach. The internal energy generation mainly follows the isolated wave breakers, and there is a 3D pattern of wave heating due to the complicated wave breaking process and current system. In general, the magnitude of the generated internal energy or temperature by dissipation of breaking wave energy in the surf zone is relatively small. The present study shows that the generated water temperature is in the order of 10^-3 Kelvin for wave breaking over a typical coastal beach.


1980 ◽  
Vol 1 (17) ◽  
pp. 65
Author(s):  
T.O. Sasaki ◽  
H. Igarashi ◽  
S. Harikai

Nearshore circulation on a partially rocky shore at Haranomachi Beach, Fukushima Prefecture, Japan has been studied in terms of field observations and numerical experiments for a low energy wave regime and with a physical experiment for a high energy wave regime. No significant distinctions were found in current velocity and rip current spacing between rocky and sandy beaches for the low energy wave regime, however the positions of rip currents were affected by wave refraction from the offshore exposed rocky bottom. On the other hand, since the surf zone bed is largely occupied by an exposed rocky floor for the high energy wave regime, the circulation exhibited fairly irregular patterns, so that a rip current becomes difficult to define, however the positions of inflow across the breaker line were found to be coincident with wave convergence zone.


1984 ◽  
Vol 1 (19) ◽  
pp. 140 ◽  
Author(s):  
Tamio O. Sasaki ◽  
Hiroshi Sakuramoto

Prototype experiments on rip currents and sediment transport around structures were conducted at two fishery harbors on microtidal high energy beaches facing the Pacific Ocean. The purpose of the experiments was to examine the performance and mechanism of rip current barrier structures on harbor shoaling. Based on the results of five experiments, the wave breaker heights during which varied from 1.1 m to 3.0 m, it is concluded that shore-parallel rip current barriers are effective if their length is greater than the surf zone width and if they are located outside the surf zone. When the above conditions are satisfied, the rip current barrier is a cost-effective measure against shoaling of small craft harbors.


2021 ◽  
Author(s):  
Elias de Korte ◽  
Bruno Castelle ◽  
Eric Tellier

Abstract. A Bayesian network (BN) approach is used to model and predict shore-break related injuries and rip-current drowning incidents based on detailed environmental conditions (wave, tide, weather, beach morphology) on the high-energy Gironde coast, southwest France. Six years (2011–2017) of boreal summer (15 June–15 September) surf zone injuries (SZIs) were analysed, comprising 442 (fatal and non-fatal) drownings caused by rip currents and 715 injuries caused by shore-break waves. Environmental conditions at the time of the SZIs were used to train two separate Bayesian networks (BNs), one for rip current drownings and the other one for shore-break wave injuries, each one with a hidden hazard and exposure variables. Both BNs were tested for varying complexity using K-fold cross-validation based on multiple performance metrics. Validation (prediction) results slightly improve predictions of SZIs with a poor to fair skill based on a combination of different metrics. Shore-break related injuries appear more predictable than rip current drowning incidents as the shore-break BN systematically performed better than the rip current BN. Sensitivity and scenario analyses were performed to address the influence of environmental data variables and their interactions on exposure, hazard and resulting life risk. Most of our findings are in line with earlier SZI and physical hazard-based work, that is, that more SZIs are observed for warm sunny days with light winds, long-period waves, with specifically more shore-break related injuries at high tide and for steep beach profiles, and more rip current drownings near low tide with near shore-normal wave incidence and strongly alongshore non-uniform surf zone morphology. The BNs also provided fresh insight, showing that rip current drowning risk is approximately equally distributed between exposure (variance reduction Vr = 14.4 %) and hazard (Vr = 17.4 %), while exposure of water user to shore-break waves is much more important (Vr = 23.5 %) than the hazard (Vr = 10.9 %). Large surf is found to decrease beachgoer exposure to shore-break hazard, while this is not observed for rip currents. Rapid change in tide elevation during days with large tidal range was also found to result in more drowning incidents, presumably because it favors the rapid onset of rip current activity and can therefore surprise unsuspecting bathers. We advocate that such BNs, providing a better understanding of hazard, exposure and life risk, can be developed to improve public safety awareness campaigns, in parallel with the development of more skillful risk predictors to anticipate high life-risk days.


2012 ◽  
Vol 1 (33) ◽  
pp. 36
Author(s):  
Gundula Winter ◽  
Ap Van Dongeren ◽  
Matthieu De Schipper ◽  
Jaap Van Thiel de Vries

Rip currents are wave-induced and off-shore directed flows which occur frequently in the surf zone and can pose a serious threat to swimmers. While the behaviour of rip currents has been studied in swell-dominated environments, less is known about their characteristics in wind-sea dominated environments. This study aims to improve the knowledge on rip currents in these environments such as the Dutch coast. In a field campaign at Egmond aan Zee (The Netherlands), Lagrangian velocities in the surf zone were measured with drifter floats. An extensive dataset of rip current measurements was collected from which parameters that initiate rip currents and affect their mean flow properties were identified. Numerical simulations with XBeach aided to understand and confirm the observations made in the field. A reduction of the hydrodynamic parameters along with simplification of the bathymetry in the model allowed for identification of the governing rip current parameters, which can be the basis for a warning system.


2021 ◽  
Vol 10 (2) ◽  
pp. 396-403
Author(s):  
Nur Syafiqa Aifa Shahrom ◽  
Md Naiem Mohd Azzeri ◽  
Mohd Shukri Yusop ◽  
Mohd Norsyarizad Razali ◽  
Mohd Najib Bin Abdul Ghani Yolhamid ◽  
...  

This paper presents a research to determine the effects of the Northeast Monsoon (NEM) and the Southwest Monsoon (SWM) on wave power along the coastal area of Mandi Darah Island, Sabah. This study identified the daily data of wave height and wave period for 6 months from June to December 2018. The following period was chosen because it consisted of two monsoon seasons in Sabah. The data obtained from the Acoustic Doppler Current Profiler (ADCP) were thoroughly analyzed to estimate the wave height and the wave period to identify the wave power at Mandi Darah Island. The wave heights ranged from 0.01 m to 0.47 m while the wave periods ranged from 1.0 s to 8.6 s. The wave height range during the NEM was higher by 0.12 m than SWM, while the difference of wave period was significantly higher by 2.17 s during the NEM. The maximum wave power recorded at Mandi Darah Island was 1.57 kW/m throughout the period. During NEM, the wave power was significantly higher than during SWM, by 0.70 kW/m. These findings led to determining the wave energy type converter that suits the wave conditions at the Mandi Darah Island coastal area.


Sign in / Sign up

Export Citation Format

Share Document