scholarly journals DEVELOPING AND VALIDATING A GT-SUITE BASED MODEL FOR A SECOND GENERATION COMMONRAIL SOLENOID INJECTOR

2021 ◽  
Vol 59 (3) ◽  
pp. 390
Author(s):  
Dat Xuan Nguyen ◽  
Vu Hoang Nguyen ◽  
Phuong Xuan Pham

Injection profiles, containing important parameters like injection rate, directly affect the spray structure, fuel-air mixture quality, and as such the physical and chemical processes occurring in the IC engine’s combustion chamber. Therefore, injection profiles are one of the keys to improving power, thermal efficiency and minimizing the emission for IC engines. In this paper, a GT-Suite - based simulation model for a second generation solenoid commonrail injector typically utilized in Hyundai 2.5 TCI-A diesel engines, has been successfully developed and validated. The validation is done by using experimental data are acquired by a Zeuch’s method-based Injection Analyzer (UniPg STS) in University of Perugia, Italy. The calibration data is measured over a wide range of rail pressure and energizing time (ET) corresponding to the engine operating conditions. The results show that the injector model developed here is reliable and suitable for examining the injector’s hydraulic characteristics. The difference in start of injection values obtained through experiment and simulation is only about 15 µs. The total injection volumes obtained through experiment and simulation under ET > 0.8 ms is less than     10 % while the difference is quite high under ET < 0.8 ms and high rail pressure (up to 34.5 %).

2020 ◽  
Vol 12 (18) ◽  
pp. 7666
Author(s):  
Vu H. Nguyen ◽  
Minh Q. Duong ◽  
Kien T. Nguyen ◽  
Thin V. Pham ◽  
Phuong X. Pham

Examining the influence of thermal conditions in the engine cylinder at the start of fuel injection on engine combustion characteristics is critically important. This may help to understand physical and chemical processes occurring in engine cycles and this is relevant to both fossil fuels and alternative fuels like biodiesels. In this study, six different biodiesel–diesel blends (B0, B10, B20, B40, B60 and B100 representing 0, 10, 20, 40, 60 and 100% by volume of biodiesel in the diesel–biodiesel mixtures, respectively) have been successfully tested in a cooperative fuel research (CFR) engine operating under a wide range of thermal conditions at the start of fuel injection. This is a standard cetane testing CFR-F5 engine, a special tool for fuel research. In this study, it was further retrofitted to investigate combustion characteristics along with standard cetane measurements for those biodiesel blends. The novel biodiesel has been produced from residues taken from a palm cooking oil manufacturing process. It is found that the cetane number of B100 is almost 30% higher than that of B0 and this could be attributed to the oxygen content in the biofuel. Under similar thermal conditions at the start of injection, it is observed that the influence of engine load on premixed combustion is minimal. This could be attributable to the well-controlled intake air temperature in this special engine and therefore the evaporation and mixing rate prior to the start of combustion is similar under different loading conditions. Owing to higher cetane number (CN), B100 is more reactive and auto-ignites up to 3 degrees of crank angle (DCA) earlier compared to B0. It is generally observed in this study that B10 shows a higher maximum value of in-cylinder pressure compared to that of B0 and B20. This could be evidence for lubricant enhancement when operating the engine with low-blending ratio mixtures like B10 in this case.


1982 ◽  
Vol 104 (2) ◽  
pp. 121-129
Author(s):  
A. Hanafi ◽  
G. A. Karim

The physical and chemical processes that occur typically within and around an oil sand fragment are considered when the fragment is suddenly introduced into a hot, low-uniform velocity, gaseous oxidizing stream. In this analytical study, the extent of bitumen volatilization was obtained from a consideration of the simultaneous heat and mass transfer within spherical oil sand fragments combined with a simplified cracking scheme of the heavy oil and asphaltene into coke and distillate. The resulting system of equations together with the boundary conditions arising from subjecting the fragments to hot convective streams were solved using Laplace transformation. The transient concentrations of bitumen and temperature within the fragments were then obtained under a wide range of operating conditions. The similarity of the expression obtained for the extent of bitumen volatilization to the expression derived from simplified analysis, based on a dropletlike model, was demonstrated for cases where the transient effects within the fragments were considered to be negligible. The results of the theoretical analysis show relatively good agreement with their corresponding experimental values at high stream temperatures, while they showed relatively inferior agreement at low temperatures.


Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3087
Author(s):  
Simón Martínez-Martínez ◽  
Oscar A. de la Garza ◽  
Miguel García-Yera ◽  
Ricardo Martínez-Carrillo ◽  
Fausto A. Sánchez-Cruz

An experimental study was performed to explore the influence of dwell time on the hydraulic interactions between injection events using pilot injection strategy, split injection strategy, post injection strategy and a solenoid diesel injector. To do so, a sweep of dwell time from 0.55 up to 2 ms using all multiple injection strategies and levels of rail pressure, of 80, 100 and 120 MPa, and single level of back pressure, of 5 MPa, was performed. The hydraulic interactions between injection events were characterized through the second injection hydraulic delay and second injection mass in an injection discharge curve indicator equipped with all the components required for its operation and control. In order to define the operating conditions of the multiple injection strategies, to ensure the same injected fuel mass in all cases, the characteristic curves of injection rate for the solenoid diesel injector studied were obtained. The second injection hydraulic delay increases with dwell time values in the range of 0.55–0.9 ms for all multiple injection strategies and levels of rail pressure tested. Conversely, the second injection hydraulic delay decreases with dwell time values higher than 0.9 ms. Moreover, the second hydraulic delay depends mainly on the dwell time and not on the injected fuel mass during the first injection event. The second injection mass increases with dwell values less than 0.6 ms. By contrast, the second injection mass is not significantly affected by that of the first injection at a dwell time higher than 0.6 ms.


Author(s):  
Shawn R. Wilhelm ◽  
James D. Van De Ven

Current state of the art variable displacement pumps suffer from poor efficiency at low volumetric displacement. Additionally, their performance is strongly dependent on operating conditions. A new variable displacement linkage pump architecture has been developed which can achieve high efficiency across a wide range of operating conditions. Previous work has described the kinematics, energy loss modeling, and experimental validation of a low power single cylinder prototype as well as the design of a second generation prototype. The second generation pump employs roller element bearings in its joints to minimize friction losses and the three cylinder design reduces the pressure ripple. In this paper, experimental characterization is presented of the new 21 MPa, 6.75 cc/rev pump. High mechanical efficiency is achieved at low volumetric displacements at partial loads as low as 0.6% of maximum power. Poorly performing cartridge check valves result in low volumetric efficiencies at low displacements. Close agreement was obtained between the model and predicted work input using measured cylinder data as an input into the model. This work shows that the presented pump with properly functioning valves can achieve high efficiency across a wide range of operating conditions. Having such versatile pump performance can greatly improve the performance of hydraulic systems as well as expand their potential applications.


MRS Bulletin ◽  
2006 ◽  
Vol 31 (2) ◽  
pp. 87-94 ◽  
Author(s):  
Paul J.A. Kenis ◽  
Abraham D. Stroock

AbstractOver the last two decades, our ability to create networks of fluidic channels of submillimeter or even sub-micrometer diameters has led to a wide range of microchemical applications. Whereas early efforts were directed toward the development of microanalysis systems, in more recent times the development of microreactors and tools for biotechnology and basic biological studies has emerged. This issue of MRS Bulletin highlights the many different ways in which material properties are crucial in the fabrication, assembly, and operation of micro- and nanofluidic systems. Choice-of-material considerations range from an assessment of whether a desired channel design can be microfabricated in a certain material to whether the material is compatible with the operating conditions (i.e., pressure, temperature) and the chemical composition (solvent, solutes) of the fluid used. Moreover, in certain cases, specific surface or bulk material properties can be used to the benefit of the application of the device. In the development of today's wide range of integrated micro- and nanofluidic applications, a common challenge emerges: meeting the often contradictory set of constraints imposed on the physical and chemical properties of materials by the envisioned applications. This issue reviews these challenges and their solutions and provides an outlook on how the ingenious use of existing and new materials can spur the development of ever more sophisticated micro- and nanofluidic systems.


Author(s):  
Xuejian Ma ◽  
Yan Lei ◽  
Tao Qiu ◽  
Jingen Wang ◽  
Guangzhao Yue

As an important part of the common-rail (CR) fuel system for diesel engines, the injector circulation capacity and the fuel injection mass flow rate vary with carbon deposition and wear, affecting the engine output performance. This study proposes a method to identify the fuel injection rate online, based on the rail pressure fluctuation characteristics induced by fuel injection. The control algorithm uses the signal from the existing rail pressure sensor; the diesel engine does not require modification or additional sensors. A quasi-dimensional model of the CR fuel system was built to analyse the rail pressure wave fluctuation characteristics, and a parameter K was defined as the pressure drop rate. Based on K, a control algorithm was proposed. A high-pressure fuel pump test rig was built to test the fuel injection performance under different operating conditions, and the experimental data were processed by wavelet transform. From the test data, the K of the CR system was analysed using the feedback of the rail pressure sensor. The experimental results show that the value of K increases with an increase in the initial pressure and injection pulse, and is independent of the injection mode. The algorithm is feasible, and works more accurately with a longer injection pulse and a lower pump speed. This method uses the existing rail pressure sensor, does not incur extra cost and has great potential for improving the injection accuracy.


Author(s):  
David A. Ansley

The coherence of the electron flux of a transmission electron microscope (TEM) limits the direct application of deconvolution techniques which have been used successfully on unmanned spacecraft programs. The theory assumes noncoherent illumination. Deconvolution of a TEM micrograph will, therefore, in general produce spurious detail rather than improved resolution.A primary goal of our research is to study the performance of several types of linear spatial filters as a function of specimen contrast, phase, and coherence. We have, therefore, developed a one-dimensional analysis and plotting program to simulate a wide 'range of operating conditions of the TEM, including adjustment of the:(1) Specimen amplitude, phase, and separation(2) Illumination wavelength, half-angle, and tilt(3) Objective lens focal length and aperture width(4) Spherical aberration, defocus, and chromatic aberration focus shift(5) Detector gamma, additive, and multiplicative noise constants(6) Type of spatial filter: linear cosine, linear sine, or deterministic


2019 ◽  
Vol 50 (4) ◽  
pp. 693-702 ◽  
Author(s):  
Christine Holyfield ◽  
Sydney Brooks ◽  
Allison Schluterman

Purpose Augmentative and alternative communication (AAC) is an intervention approach that can promote communication and language in children with multiple disabilities who are beginning communicators. While a wide range of AAC technologies are available, little is known about the comparative effects of specific technology options. Given that engagement can be low for beginning communicators with multiple disabilities, the current study provides initial information about the comparative effects of 2 AAC technology options—high-tech visual scene displays (VSDs) and low-tech isolated picture symbols—on engagement. Method Three elementary-age beginning communicators with multiple disabilities participated. The study used a single-subject, alternating treatment design with each technology serving as a condition. Participants interacted with their school speech-language pathologists using each of the 2 technologies across 5 sessions in a block randomized order. Results According to visual analysis and nonoverlap of all pairs calculations, all 3 participants demonstrated more engagement with the high-tech VSDs than the low-tech isolated picture symbols as measured by their seconds of gaze toward each technology option. Despite the difference in engagement observed, there was no clear difference across the 2 conditions in engagement toward the communication partner or use of the AAC. Conclusions Clinicians can consider measuring engagement when evaluating AAC technology options for children with multiple disabilities and should consider evaluating high-tech VSDs as 1 technology option for them. Future research must explore the extent to which differences in engagement to particular AAC technologies result in differences in communication and language learning over time as might be expected.


2020 ◽  
Vol 7 (2) ◽  
pp. 34-41
Author(s):  
VLADIMIR NIKONOV ◽  
◽  
ANTON ZOBOV ◽  

The construction and selection of a suitable bijective function, that is, substitution, is now becoming an important applied task, particularly for building block encryption systems. Many articles have suggested using different approaches to determining the quality of substitution, but most of them are highly computationally complex. The solution of this problem will significantly expand the range of methods for constructing and analyzing scheme in information protection systems. The purpose of research is to find easily measurable characteristics of substitutions, allowing to evaluate their quality, and also measures of the proximity of a particular substitutions to a random one, or its distance from it. For this purpose, several characteristics were proposed in this work: difference and polynomial, and their mathematical expectation was found, as well as variance for the difference characteristic. This allows us to make a conclusion about its quality by comparing the result of calculating the characteristic for a particular substitution with the calculated mathematical expectation. From a computational point of view, the thesises of the article are of exceptional interest due to the simplicity of the algorithm for quantifying the quality of bijective function substitutions. By its nature, the operation of calculating the difference characteristic carries out a simple summation of integer terms in a fixed and small range. Such an operation, both in the modern and in the prospective element base, is embedded in the logic of a wide range of functional elements, especially when implementing computational actions in the optical range, or on other carriers related to the field of nanotechnology.


2020 ◽  
Vol 24 (4) ◽  
pp. 108-118
Author(s):  
A. V. Petraikin ◽  
A. K. Smorchkova ◽  
N. D. Kudryavtsev ◽  
K. A. Sergunova ◽  
Z. R. Artyukova ◽  
...  

Rationale. Quantitative CT (QCT) bone densitometry with asynchronous calibration not require a phantom during the scan procedure. Based on calibration data it converts X-ray density in HU to bone mineral density (BMD). Given the large number of CT studies performed on patients at risk of osteoporosis, there is a need for a hands-on method capable of assessing BMD in a short period of time without tailored software or protocols.Goal. To develop a method for QCT bone densitometry using an PHK (PHantom Kalium), to compare the volume BMD measurements with the QCT data with asynchronous calibration provided by software from a reputable developer.Methods. The studies were performed at 64-slice CT unit with body scanning parameters. The BMD was measured using two techniques: 1) QCT with asynchronous calibration using software from a reputable developer; 2) QCT using a PHK phantom (QCT-PHK). For convert the HU to BMD values, we scanned the PHK phantom and calculate correction factor. Phantom contains “vertebrae” filled with potassium hydrogen phosphate in different concentrations. In both methods, the BMD values measured for LI–II, and sometimes for ThXII, LIII.Results. The study enrolled 65 subjects (11 male and 54 female patients); median age 69.0 years. A comparison of the vertebrae BMD measured by QCT and QCT-PHK revealed a significant linear Pearson correlation r = 0.977 (p < 0.05). The Bland–Altman analysis demonstrated a lack of relationship between the difference in measurements and the average BMD and a systematic BMD; bias of +4.50 mg/ml in QCT vs. QCT-PHK. Differences in the division into groups osteoporosis / osteopenia / norm according to the ACR criteria for the two methods were not significant.Conclusion. The developed asynchronous QCT-PHK method measure BMD comparable to the widely used QCT with asynchronous calibration. This method can be used for opportunistic screening for osteoporosis.


Sign in / Sign up

Export Citation Format

Share Document