scholarly journals CAD-FEA modeling and fracture resistance of bilayer zirconia crowns manufactured by the rapid layer technology

2021 ◽  
Vol 32 (3) ◽  
pp. 44-55
Author(s):  
Julia Magalhães Costa Lima ◽  
Anna Karina Figueiredo Costa ◽  
Lilian Costa Anami ◽  
Karina Barbosa Souza ◽  
Nathalia Ramos da Silva ◽  
...  

Abstract In the RLT (Rapid Layer Technology), veneering ceramic and framework are fabricated by computer-aided design/computer-aided manufacturing (CAD/CAM) and then cemented to obtain the restoration. This study aimed to evaluate the effect of the thickness of veneering ceramic manufactured by the RLT technique on the fracture resistance (FR) of bilayer crowns with zirconia frameworks. Twenty zirconia frameworks and twenty feldspathic posterior crowns with two different veneering ceramic occlusal thicknesses (1mm=TF1; 2mm=TF2) were manufactured using CAD/CAM system. The specimens were luted to an epoxy resin abutment with resin cement and mechanically cycled (200N and 4.5×105 Pa, 37°C, 2×106 cycles, 3Hz). The FR test was performed (10kN, 0.5mm/min), and the specimens were analyzed in a stereomicroscope. For the stress analysis (finite element analysis, FEA), a 10kN load was equal to the in vitro test, and the principal stress was evaluated. The FR data were analyzed by Student’s t-test and Weibull's analysis. The thickness influenced the FR of bilayer crowns. The FR was higher in the TF2 than in the TF1 group. The TF2 group presented the highest characteristic strength compared to the group TF1. The predominant type of failure was delamination. The FEA showed higher stress concentrations below the loading application point at the veneering cement interface in the 1-mm-thick model. The bilayer crowns manufactured using the approach of 2mm of veneering ceramic promoted higher FR compared to the group with 1mm veneering ceramic. Also, the FEA showed that the veneer ceramic thickness has an effect on stress distribution in zirconia-based bilayer crowns.

Author(s):  
Abdulrahman Alhaddad ◽  
Samar Abuzinadah ◽  
Abdullah Al-Otaibi ◽  
Abrar Alotaibi ◽  
Mohsen Alfkih ◽  
...  

Background: Zirconia-based restorations have become more popular in dentistry during the last two decades. Patients choose metal-free restorations, preferring materials with similar attributes to natural teeth and similar light scattering characteristics, resulting in a nice esthetic appearance. Restoring a root canal treated teeth is one of the hot topics today. endo crown materials can be either; feldspathic, glass-ceramic, monolithic hybrid ceramic or composite material. Considering the marginal gap of endocrown, an important cause of failure of treatment, the current study evaluated the marginal gap of CAD‐CAM concocted endo-crowns. Materials and Methods: This research is an analysis systemic review study was conducted between January 2020 and October 2021. We followed the PRISMA principles and recorded this systematic review using the PROSPERO database to find and identify published literature related to the marginal adaptation of CAD-CAM-fabricated endocrown. The search will include all relevant articles through the end of 2021. Finally, 24 papers on marginal clearance and fracture resistance in coronary arteries were reviewed. Results: The electronic database search yielded 98 studies that were relevant. After cross-referencing, further seven studies were added. After a full-text analysis and duplicate reduction, 74 of the 98 articles were eliminated. 5 clinical (prospective) studies, 19 in vitro studies were found. Conclusion: This analysis of the recent literature on the marginal seating integrity and fracture resistance of CAD/CAM made-up endo-crowns showed that the endo-crown had superior marginal seating integrity than classical full crown. CAM/CAM showed statistically significant higher mean fracture resistance than MAD/MAM.


2019 ◽  
Vol 18 (4) ◽  
pp. 764-772
Author(s):  
Asa Yazdani Fard ◽  
Zuryati Ab Ghani ◽  
Zaihan Ariffin ◽  
Dasmawati Mohamad

Background: Studies on microleakage of Computer-Aided Design/Computer-Aided Manufacturing (CAD/CAM) crowns are abundant. However many of them are inconclusive, especially those using self adhesive cements. Aims: To compare the microleakage between CAD/CAM crowns milled out of feldspathic ceramic and resin nano ceramics, cemented with three resin cements. Materials and Methods: Crown preparation was made on 54 extracted human premolars. Impressions were captured optically using CEREC 3D machine intraoral camera, and crowns were milled from feldspathic ceramic (CEREC® Blocs PC, VITA) and resin nano ceramic (Lava™ Ultimate CAD/CAM Restorative, 3M ESPE) blocks. The crowns were then cemented with three cements (n = 9); RelyX™ U200 Self-Adhesive Resin Cement (3M ESPE); NX3 Nexus ® cement with two-step etch-and-rinse adhesive (Kerr Corporation) or three/multistep etch-and-rinse resin cement, Variolink® II/Syntac Classic (Ivoclar Vivadent). The specimens were kept in water for 24 hours, thermocycled, and then soaked in methylene blue dye for 24 hours, before being sectioned mesiodistally. Microleakage was assessed using a fivepoint scale using stereomicroscope. Statistical analysis of the data was carried out using ONEWay ANOVA. Results: CEREC® Blocs PC crowns showed significantly less microleakage (p< 0.001) compared to Lava™ Ultimate. RelyX™ U200 showed significantly lower microleakage (p< 0.001) compared to other cements. Combination of Lava™ Ultimate crown cemented with RelyX™ U200 showed the least microleakage (p< 0.001). Conclusions: The microleakage scores were affected by the types of crown and cements. Bangladesh Journal of Medical Science Vol.18(4) 2019 p.764-772


2015 ◽  
Vol 40 (2) ◽  
pp. 201-210 ◽  
Author(s):  
HM El-Damanhoury ◽  
RN Haj-Ali ◽  
JA Platt

SUMMARY This study assessed marginal leakage and fracture resistance of computer-aided design/computer-aided manufacturing (CAD/CAM) fabricated ceramic crowns with intracoronal extensions into the pulp chambers of endodontically treated teeth (endocrowns) using either feldspathic porcelain (CEREC Blocks [CB], Sirona Dental Systems GmbH, Bensheim, Germany), lithium disilicate (e.max [EX], Ivoclar Vivadent, Schaan, Liechtenstein), or resin nanoceramic (Lava Ultimate [LU], 3M ESPE, St Paul, MN, USA).). Thirty extracted human permanent maxillary molars were endodontically treated. Standardized preparations were done with 2-mm intracoronal extensions of the endocrowns into the pulp chamber. Teeth were divided into three groups (n=10); each group was restored with standardized CAD/CAM fabricated endocrowns using one of the three tested materials. After cementation with resin cement, specimens were stored in distilled water at 37°C for one week, subjected to thermocycling, and immersed in a 5% methylene-blue dye solution for 24 hours. A compressive load was applied at 35 degrees to long axis of the teeth using a universal testing machine until failure. Failure load was recorded, and specimens were examined under a stereomicroscope for modes of failure and microleakage. Results were analyzed using one-way analysis of variance and Bonferroni post hoc multiple comparison tests (α=0.05). LU showed significantly (p&lt;0.05) higher fracture resistance and more favorable fracture mode (ie, fracture of the endocrown without fracture of tooth) as well as higher dye penetration than CB and EX. In conclusion, although using resin nanoceramic blocks for fabrication of endocrowns may result in better fracture resistance and a more favorable fracture mode than other investigated ceramic blocks, more microleakage may be expected with this material.


2019 ◽  
Vol 8 (11) ◽  
pp. 1932 ◽  
Author(s):  
Amesti-Garaizabal ◽  
Agustín-Panadero ◽  
Verdejo-Solá ◽  
Fons-Font ◽  
Fernández-Estevan ◽  
...  

Background: The aim of this systematic review and meta-analysis was to determine the fracture resistance and survival rate of partial indirect restorations inlays, onlays, and overlays fabricated using computer-aided design and computer-aided manufacturing (CAD-CAM) technology from ceramics, composite resin, resin nanoceramic, or hybrid ceramic and to analyze the influence of proximal box elevation on fracture resistance. Materials and methods: This systematic review was based on guidelines proposed by the preferred reporting items for systematic reviews and meta-analyses (PRISMA). An electronic search was conducted in databases US National Library of Medicine National Institutes of Health (PubMed), Scopus, Web of Science (WOS), and Embase. In vitro trials published during the last 10 years were included in the review. Results: Applying inclusion criteria based on the review’s population, intervention, comparison, outcome (PICO) question, 13 articles were selected. Meta-analysis by restoration type estimated the fracture resistance of inlays to be 1923.45 Newtons (N); of onlays 1644 N and of overlays 1383.6 N. Meta-analysis by restoration material obtained an estimated fracture resistance for ceramic of 1529.5 N, for composite resin of 1600 Ne, for resin nanoceramic 2478.7 N, and hybrid ceramic 2108 N. Conclusions: Resin nanoceramic inlays present significantly higher fracture resistance values. Proximal box elevation does not exert any influence on the fracture resistance of indirect restorations.


2021 ◽  
Vol 9 (D) ◽  
pp. 37-42
Author(s):  
Abd El Azeem Mostafa ◽  
Cherif A. Mohsen

BACKGROUND: Ceramic laminate veneer restoring is considered a challenging modality in solving various esthetic dental problems. AIM: The purpose of this study was to investigate the effect of digital internal relief space on the color of ceramic laminate veneer. MATERIALS AND METHODS: An acrylic central incisor model was prepared for ceramic laminate veneer with standard measures. The prepared acrylic resin dentotype model was scanned with intraoral computer-aided design/computer-aided manufacturing (CAD/CAM) optical scanner (CEREC Omnicam|Dentsply Sirona). The laminate veneer design was planned on the optically scanned preparation on CAD/CAM system software (CEREC software|Dentsply Sirona). Thirty ceramic laminate veneer specimens were machined from zirconia-reinforced lithium silicate (Celtra Duo blocks, Dentsply/Sirona) according to standard design by CAD/CAM system with the change of the digital internal relief space settings. The specimens were divided into three groups according to their digital internal relief settings (IRS) (20, 60, and 100 μm) (n = 10). Thirty epoxy dies were duplicated from the prepared acrylic model. The ceramic laminate veneer specimens were cemented to epoxy dies with total etch resin cement system according to the manufacture instructions. The color change (ΔE) of the cemented ceramic laminate veneer specimens was measured by spectrophotometer (Vita Easy shade, Ivoclar Vivadent AG, Schaan, Liechtenstein) using the CIELAB scale and L*, a*, b*. Each specimen was measured two times (before and after cementation). The value of color difference (ΔE) was calculated according to the formula: ΔE = [(L*2 - L*1)2 + (a*2 - a*1)2 + (b*2- b*1) 2]½. RESULTS: The highest mean value of ΔE was recorded in G100 group (1.91 ± 0.33), followed by G60 group (1.83 ± 0.09), with the least value recorded in G20 group (1.49 ± 0.49). Analysis of variance test revealed a statistically significant difference between groups (p = 0.024). CONCLUSION: The change of the digital IRS affects the color of ceramic laminate veneers.


2018 ◽  
Vol 43 (5) ◽  
pp. 539-548 ◽  
Author(s):  
JP Andrade ◽  
D Stona ◽  
HR Bittencourt ◽  
GA Borges ◽  
LH Burnett ◽  
...  

SUMMARY The aim was to evaluate, in vitro, the influence of different computer-aided design/computer-aided manufacturing (CAD/CAM) materials (IPS e.max CAD, Vita Enamic, and Lava Ultimate) and thicknesses (0.6 mm and 1.5 mm) on the fracture resistance of occlusal veneers. Sixty human third molars were prepared to simulate advanced erosion of the occlusal surface, and the teeth were randomly divided into six experimental groups (n=10) according to the material and thickness used to build the veneers. Ten sound teeth formed the control group. The veneers were adhesively luted and submitted to mechanical cyclic loading (1 million cycles at 200-N load). The fracture resistance test was performed in a universal testing machine. The failures were classified as “reparable” and “irreparable.” According to two-way analysis of variance and the Tukey test, the interaction (material × thickness) was significant (p=0.013). The highest fracture resistance was obtained for IPS e.max CAD at a 1.5-mm thickness (4995 N) and was significantly higher compared to the other experimental groups (p&lt;0.05). The lowest fracture resistance was obtained for Vita Enamic at 0.6 mm (2973 N), although this resistance was not significantly different from those for IPS e.max CAD at 0.6 mm (3067 N), Lava Ultimate at 0.6 mm (3384 N), Vita Enamic at 1.5 mm (3540 N), and Lava Ultimate at 1.5 mm (3584 N) (p&gt;0.05). The experimental groups did not differ significantly from the sound teeth (3991 N) (p&gt;0.05). The failures were predominantly repairable. The occlusal veneers of IPS e.max CAD, Vita Enamic, and Lava Ultimate, with thicknesses of 0.6 mm and 1.5 mm, obtained fracture resistances similar to those associated with sound teeth.


Author(s):  
Alireza Yazdanshenas ◽  
Emilli Morrison ◽  
Chung-Hyun Goh ◽  
Janet K. Allen ◽  
Farrokh Mistree

To save time and resources, many are making the transition to developing their ideas virtually. Computer-aided gear production realization is becoming more and more desired in the industry. To produce gears with custom qualities, such as material, weight and shape, the trial and error approach has yielded the best results. However, trial and error is costly and time consuming. The computer-aided integrated design and manufacturing approach is intended to resolve these drawbacks. A simple one stage reduction spur gearbox is used as an example in a case study. First, the gear geometry is developed using computer aided design (CAD) modeling. Next, using MATLAB/Simulink, the gear assembly is connected virtually to other subsystems for system expectations and interaction analysis. Finally, using finite element analysis (FEA) tools such as ABAQUS, a dynamic FEA of the gear integration is completed to analyze the stress concentrations and gear tooth failures. Through this method of virtual gear design, customized dimensions and specifications of gears for satisfying system-level requirements can be developed, thereby saving time and manufacturing costs for any custom gear design request.


2016 ◽  
Vol 41 (6) ◽  
pp. 666-671 ◽  
Author(s):  
C Gillette ◽  
R Buck ◽  
N DuVall ◽  
S Cushen ◽  
M Wajdowicz ◽  
...  

SUMMARY Objective: To evaluate the significance of reduced axial wall height on retention of adhesively luted, all-ceramic, lithium disilicate premolar computer-aided design/computer-aided manufacturing (CAD/CAM) crowns based on preparations with a near ideal total occlusal convergence of 10°. Methods: Forty-eight recently extracted premolars were randomly divided into four groups (n=12). Each group received all-ceramic CAD/CAM crown preparations featuring axial wall heights of 0, 1, 2, and 3 mm, respectively, all with a 10° total occlusal convergence. Scanned preparations were fitted with lithium disilicate all-ceramic crowns that were luted with a self-etching resin cement. Specimens were tested to failure at a 45° angle to the tooth long axis with failure load converted to megapascals (MPa) based on the measured bonding surface area. Mean data were analyzed using analysis of variance/Tukey's post hoc test (α=0.05). Results: Lithium disilicate crowns adhesively luted on preparations with 0 axial wall height demonstrated significantly less failure resistance compared with the crowns luted on preparations with axial wall heights of 1 to 3 mm. There was no failure stress difference between preparations with 1 to 3 mm axial wall height. Conclusions: Under conditions of this study, adhesively luted lithium disilicate bicuspid crowns with a total occlusal convergence of 10° demonstrated similar failure resistance independent of axial wall height of 1 to 3 mm. This study provides some evidence that adhesion combined with an ideal total occlusal convergence may compensate for reduced axial wall height.


2016 ◽  
Vol 40 (4) ◽  
pp. 264-268 ◽  
Author(s):  
Mehmet Selim Bilgin ◽  
Ali Erdem ◽  
Mehmet Tanrıver

Objective: The aim of this case report is to describe the treatment of a primary molar with a deep carious lesion by pulpotomy and placement of a ceramic endocrown. Clinical case: A 7-year-old male patient with profound caries in tooth number 85 was referred to our clinic and underwent a pulpotomy. As the final treatment in tooth restoration, placement of an endocrown was planned, because little more than half of the tooth structure remained. After an additional request from the patient's parents for an advanced and prompt restoration, a computer-aided design/computer-aided manufacturing (CAD/CAM) polymer-infiltrated ceramic network (PICN) block was chosen. A three-dimensional model of the arch was obtained after scanning the dental cast, and the endocrown was designed digitally according to the model. When the design was complete, the endocrown was fabricated with a milling machine. Finally, the endocrown was cemented with self-adhesive resin cement. Results: Over the 9-month follow-up period, no pulpal or periradicular pathology was observed on radiographs. Regarding the crown, the marginal fit was excellent, the anatomical form was protected, and no discoloration occurred. Conclusion: During follow-up, the CAD/CAM PICN block endocrown proved to be a good material for the short- to long-term treatment of a primary tooth. However, more clinical cases and follow-up are required to investigate the long-term effects of antagonistic tooth wear.


Sign in / Sign up

Export Citation Format

Share Document