scholarly journals Genetic Similarities of Escherichia Coli Isolated from Different Substrates of the Broiler Production Chain

2021 ◽  
Vol 23 (1) ◽  
Author(s):  
PFS Teles ◽  
MM Boiago ◽  
A Frigo ◽  
L Rampazzo ◽  
DN Araújo ◽  
...  
2019 ◽  
Author(s):  
Live L. Nesse ◽  
Ane Mohr Osland ◽  
Solveig Sølverød Mo ◽  
Camilla Sekse ◽  
Jannice Schau Slettemeås ◽  
...  

Abstract Background Quinolone resistant Escherichia coli (QREC) have been found in samples from Norwegian broiler chicken, despite quinolones not being administered to poultry in Norway. Biofilm production may be one factor contributing to the observed persistence in the broiler production chain. In the present study, 158 QREC strains from chicken caecal and retail meat samples were screened for biofilm production in microtiter plates, biofilm morphotype on Congo Red (CR) agar plates and phylotype by multiplex PCR. Furthermore, the dynamics in mixed biofilms with strains of different morphotypes were studied on glass slides and on CR agar plates.Results All strains but one produced biofilm in microtiter plates and/or on CR agar plates at room temperature. There were no differences between strains from chicken caecum and chicken retail meat in the mean amount of biofilm produced in microtiter plates. Furthermore, no differences in biofilm production were observed between phylotypes. However, significant differences in biofilm production were found between biofilm morphotypes. The morphotype RDAR (red dry and rough, which has both curli and cellulose in the matrix, was displayed by 70% of the strains. Mean biofilm production by these strains were significantly higher than by strains with the morphotypes PDAR (pink dry and rough) with only cellulose or BDAR (brown dry and rough) with only curli. Interestingly, the two latter morphotypes produced biofilms with the morphotype RDAR when grown together. None of the strains achieved significantly higher numbers of colony forming units (cfu) in mixed biofilms than in single strain biofilms on glass slides.Conclusions The results indicate that QREC can form biofilm reservoirs on both inert and organic surfaces in production environments, as well as on meat. This may contribute to persistence and dissemination of the strains. Strains with both curli and cellulose in the biofilm matrix were significantly better biofilm formers than strains lacking one of these components. However, strains with only one of the components could compensate for this by producing mixed biofilms with strains having the other component, and thereby most likely enhance their probabilities of persistence in the production environment.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Live L. Nesse ◽  
Ane Mohr Osland ◽  
Solveig S. Mo ◽  
Camilla Sekse ◽  
Jannice S. Slettemeås ◽  
...  

2020 ◽  
Author(s):  
Live L. Nesse ◽  
Ane Mohr Osland ◽  
Solveig Sølverød Mo ◽  
Camilla Sekse ◽  
Jannice Schau Slettemeås ◽  
...  

Abstract Background Quinolone resistant Escherichia coli (QREC) have been found in samples from Norwegian broiler chicken, despite quinolones not being administered to poultry in Norway. Biofilm production may be one factor contributing to the observed persistence in the broiler production chain. In the present study, 158 QREC strains from chicken caecal and retail meat samples were screened for biofilm production in microtiter plates, biofilm morphotype on Congo Red (CR) agar plates and phylotype by multiplex PCR. Furthermore, the dynamics in mixed biofilms with strains of different morphotypes were studied on glass slides and on CR agar plates. Results All strains but one produced biofilm in microtiter plates and/or on CR agar plates at room temperature. There were no differences between strains from chicken caecum and chicken retail meat in the mean amount of biofilm produced in microtiter plates. Furthermore, no differences in biofilm production were observed between phylotypes. However, significant differences in biofilm production were found between biofilm morphotypes. The morphotype RDAR (red dry and rough), which has both curli and cellulose in the matrix, was displayed by 70% of the strains. Mean biofilm production by these strains were significantly higher than by strains with the morphotypes PDAR (pink dry and rough) with only cellulose or BDAR (brown dry and rough) with only curli. Interestingly, the two latter morphotypes produced biofilms with the morphotype RDAR when grown together. None of the strains achieved significantly higher numbers of colony forming units (cfu) in mixed biofilms than in single strain biofilms on glass slides. Conclusions The results indicate that QREC can form biofilm reservoirs on both inert and organic surfaces in production environments, as well as on meat. This may contribute to persistence and dissemination of the strains. Strains with both curli and cellulose in the biofilm matrix were significantly better biofilm formers than strains lacking one of these components. However, strains with only one of the components could compensate for this by producing mixed biofilms with strains having the other component, and thereby most likely enhance their probabilities of persistence in the production environment.


2020 ◽  
Vol 86 (7) ◽  
Author(s):  
Håkon Kaspersen ◽  
Camilla Sekse ◽  
Eve Zeyl Fiskebeck ◽  
Jannice Schau Slettemeås ◽  
Roger Simm ◽  
...  

ABSTRACT In Norway, the use of quinolones in livestock populations is very low, and prophylactic use is prohibited. Despite this, quinolone-resistant Escherichia coli (QREC) isolates are present at low levels in several animal species. The source of these QREC isolates is unknown. The aim of this study was to characterize and compare QREC isolates from different animal species to identify putative factors that may promote the occurrence of QREC. A total of 280 QREC isolates, from broilers, pigs, red foxes, and wild birds, were whole-genome sequenced and analyzed. Well-known chromosomal and plasmid-mediated resistance mechanisms were identified. In addition, mutations in marR, marA, and rpoB causing novel amino acid substitutions in their respective proteins were detected. Phylogenetic analyses were used to determine the relationships between the isolates. Quinolone resistance mechanism patterns appeared to follow sequence type groups. Similar QREC isolates with similar resistance mechanism patterns were detected from the samples, and further phylogenetic analysis indicated close evolutionary relationships between specific isolates from different sources. This suggests the dissemination of highly similar QREC isolates between animal species and also the persistence of QREC strains within the broiler production chain. This highlights the importance of both control measures at the top of the production chain as well as biosecurity measures to avoid the further dissemination and persistence of QREC in these environments. IMPORTANCE Since antimicrobial usage is low in Norwegian animal husbandry, Norway is an ideal country to study antimicrobial resistance in the absence of selective pressure from antimicrobial usage. In particular, the usage of quinolones is very low, which makes it possible to investigate the spread and development of quinolone resistance in natural environments. Comparison of quinolone-resistant E. coli (QREC) isolates from livestock and wild animals in light of this low quinolone usage provides new insights into the development and dissemination of QREC in both natural and production environments. With this information, preventive measures may be taken to prevent further dissemination within Norwegian livestock and between other animals, thus maintaining the favorable situation in Norway.


2014 ◽  
Vol 171 (3-4) ◽  
pp. 315-320 ◽  
Author(s):  
Solveig Sølverød Mo ◽  
Madelaine Norström ◽  
Jannice Schau Slettemeås ◽  
Atle Løvland ◽  
Anne Margrete Urdahl ◽  
...  

2021 ◽  
Vol 9 (1) ◽  
pp. 104
Author(s):  
Live L. Nesse ◽  
Solveig S. Mo ◽  
Silje N. Ramstad ◽  
Ingun L. Witsø ◽  
Camilla Sekse ◽  
...  

Extended-spectrum cephalosporin-resistant Escherichia coli (ESCR E. coli) with plasmids carrying the blaCMY-2 resistance gene have been isolated from the Norwegian broiler production chain through the Norwegian monitoring program for antimicrobial resistance in animals, food and feed, NORM-VET. The aim of the present study was to investigate the biofilm forming abilities of these strains, and in particular to see whether these might be influenced by the carriage of blaCMY-2 plasmids. The ESCR E. coli from the broiler production chain displayed relatively low biofilm forming abilities in the crystal violet biofilm assay as compared to quinolone-resistant E. coli (QREC) from the same population (mean ± SD = 0.686 ± 0.686 vs. 1.439 ± 0.933, respectively). Acquisition of two different blaCMY-2 plasmids by QREC strains reduced their biofilm production in microtiter plates, but not their biofilm production on Congo Red agar plates. Furthermore, motility was reduced, but not planktonic growth. We hypothesize that genes carried by these plasmids may have caused the observed reduction in biofilm formation, possibly mediated through changes in flagellar expression or function. Furthermore, this may help explain the different biofilm forming abilities observed between ESCR E. coli and QREC. The results also indicate that the risk of biofilm reservoirs of antimicrobial resistant E. coli on in the broiler production is lower for ESCR E. coli than for QREC.


Animals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 1005
Author(s):  
Laura Montoro-Dasi ◽  
Arantxa Villagra ◽  
Sandra Sevilla-Navarro ◽  
Maria Teresa Pérez-Gracia ◽  
Santiago Vega ◽  
...  

New measures applied to reduce antimicrobial resistances (AMR) at field level in broiler production are focused on improving animals’ welfare and resilience. However, it is necessary to have better knowledge of AMR epidemiology. Thus, the aim of this study was to evaluate AMR and multidrug resistance (MDR) dynamics during the rearing of broilers under commercial (33 kg/m2 density and max. 20 ppm ammonia) and improved (17 kg/m2 density and max. 10 ppm ammonia) farm conditions. Day-old chicks were housed in two poultry houses (commercial vs. improved), and no antimicrobial agents were administered at any point. Animals were sampled at arrival day, mid-period and at slaughter day. High AMR rates were observed throughout rearing. No statistical differences were observed between groups. Moreover, both groups presented high MDR at slaughter day. These results could be explained by vertical or horizontal resistance acquisition. In conclusion, AMR and MDR are present throughout rearing. Moreover, although a lower level of MDR was observed at mid-period in animals reared under less intensive conditions, no differences were found at the end. In order to reduce the presence of AMR bacteria in poultry, further studies are needed to better understand AMR acquisition and prevalence in differing broiler growing conditions.


2018 ◽  
Vol 9 ◽  
Author(s):  
Katrin Daehre ◽  
Michaela Projahn ◽  
Anika Friese ◽  
Torsten Semmler ◽  
Sebastian Guenther ◽  
...  

2020 ◽  
Vol 9 (10) ◽  
pp. e4019108806
Author(s):  
Raquel Baracat Tosi Rodrigues da Silva ◽  
Irenilza de Alencar Nääs ◽  
Arilson José de Oliveira Júnior ◽  
João Gilberto Mendes dos Reis ◽  
Nilsa Duarte da Silva Lima ◽  
...  

The broiler production chain is productive, and chicken meat has achieved high export rates to several countries in the world. This study aimed to develop a mobile application that helps the producer to audit the issues of good production practices. The application was developed for Android and programmed in Java. For its development, questions were used, with different weights according to their importance for production. These questions were removed from the items that make up the manuals of good practices used in Brazil. A test was carried out with users to determine the possibility of using the application in the field. After answering all the questions, the user gets a score ranging from 5 to 1 (excellent to bad). It also indicates which questions they did agree with good practices. The test with users showed that the application was easy to understand and enabled users to make decisions that would improve broiler production.


Sign in / Sign up

Export Citation Format

Share Document