scholarly journals CELL DAMAGE, WATER STATUS AND GAS EXCHANGES IN CASTOR BEAN AS AFFECTED BY CATIONIC COMPOSITION OF WATER

2019 ◽  
Vol 32 (2) ◽  
pp. 482-492
Author(s):  
GEOVANI SOARES DE LIMA ◽  
HANS RAJ GHEYI ◽  
REGINALDO GOMES NOBRE ◽  
LAURIANE ALMEIDA DOS ANJOS SOARES ◽  
JOÃO BATISTA DOS SANTOS

ABSTRACT Castor bean is an oilseed crop which is able to adapt to various edaphoclimatic conditions and has considerable contents of oil in its seeds, with potential for use in the castor oil industry. In this context, this study aimed to evaluate changes in membrane damage, water status and gas exchanges in castor bean plants (cv. ‘BRS Energia’) in response to irrigation water salinity and cationic composition. Randomized blocks were used to test six cationic compositions (S1 - Control; S2 - Na+; S3 - Ca2+; S4 - Na+ + Ca2+; S5 - K+ and S6 - Na+ + Ca2+ + Mg2+), in four replicates. Plants in the control treatment were subjected to irrigation using water of low electrical conductivity (S1 - ECw = 0.6 dS m-1), whereas those in the other treatments were irrigated using 4.5 dS m-1 water prepared with different cations. Higher leaf succulence associated with lower water saturation deficit is an indication of tolerance to salt stress in castor bean plants irrigated with K+-rich water. The presence of Na+ in irrigation water caused the highest water saturation deficit in castor bean leaf blades. The lowest damage in cell membranes was observed in plants irrigated with Ca2+-rich water. The damaging effect of salt stress on castor bean gas exchanges depends on the cationic composition of water and occurred in the following order: Na+>Na++Ca2+>Ca2+> Na++Ca2++Mg2+>K+.

2021 ◽  
Vol 2 (1) ◽  
pp. 016-027
Author(s):  
Hadda Mebarki ◽  
Ouassila Ziane ◽  
Hadjer Merbah ◽  
Hamenna Bouzerzour

Drought is a prominent limiting factor that impacts negatively durum wheat grain yield. Ten durum wheat breeding lines were evaluated under rainfall conditions at the Field Crop Institute Agricultural Experimental Station of Setif, Algeria, during the 2016/2017 cropping season. The investigation aimed to study the ability of flag leaf water status to discriminate among varieties for drought tolerance trait. Significant variability was observed among the tested varieties for leaf dry, wilted and turgid weights, leaf relative water content, water saturation deficit and excised water loss, after three wilting periods of 30, 60 and 90 minutes dehydration at 40°C. The assessed breeding lines were differentially categorized as drought tolerant and drought sensitive based on either relative water content or water saturation deficit or excised leaf water loss genotypic mean values. Correlation, principal components and cluster analyses indicated an unwanted significant association between excised leaf water loss and relative water content and water saturation deficit and classified the assessed entries into three clusters (CI, C2 and C3). Cluster C1 had high relative water content, low water saturation deficit but high excised water loss, while C3 had low relative water content, low excised leaf water but high-water saturation deficit, C2 being intermediate. Crosses between distant clusters (C1 vs C3) are proposed to generate more variability of the targeted traits in progeny population and to break undesirable linkage between alleles controlling leaf water status, allowing to select efficiently drought tolerant genotypes.


2019 ◽  
Vol 45 (1) ◽  
pp. 45-54
Author(s):  
Mst Shahnaz Sultana ◽  
MA Halim ◽  
Feroza Hossain ◽  
M Abdul Karim ◽  
Mohammad Talim Hossain

Salt tolerance in relation to water status and plant nutrients of two mungbean varieties, BARImung 2 (salinity sensitive) and BUmung 2 (salinity tolerant) was evaluated. The seeds were grown in pots and treated with NaCl levels of 0 (control), 100 and 200 mM. Different parameters related to water relations as well as mineral nutritients were measured. The exudation rate and relative water content were decreased but water saturation deficit was increased by salinity in both the varieties. In BARImung 2 plants, the exudation rate and relative water content were lower but water saturation deficit was higher than those in BUmung 2 at both 100 and 200 mM NaCl levels. Salinity also influenced the accumulation of Na, K, Ca and Mg in leaves, stems and roots of the two said mungbean varieties. Sodium accumulation was inceseased in all the plant-parts of both the varieties in the order of stem > root > leaf but in BUmung 2 the accumulation was lower than that of BARImung 2 except in root. Potassium accumulation deceresed in all parts of both the mungbean varieties but that was lower in BUmung 2 than that of BARImung 2. The contents of Ca and Mg in all the plant-parts increased more in BUmung 2 than those of BARImung 2 with the increase of salinity levels. All these results indicated that high salt tolerance in BUmung 2 was associated with its better water status, more or less uniform mineral nutrient (Ca and Mg) distribution in different plantparts than that in BARImung 2. Asiat. Soc. Bangladesh, Sci. 45(1): 45-54, June 2019


2015 ◽  
Vol 43 (4) ◽  
pp. 465-470 ◽  
Author(s):  
J. Czerski ◽  
A. Sosińska ◽  
Z. Kozłowska

The volume of intercellular spaces in leaves at various stages of water saturation was determined by method of Czerski (1964, 1968). The investigation were performed with the following plant species: <i>Vicia faba</i> L., <i>Nicotiana tabacum</i> L. var. <i>rustica, Solarium tuberosum</i> L. var. Flisak, <i>Helichrysum bracteatum</i> Wild., <i>Bmssica napus</i> L. var. <i>oleifera, Beta vulgaris</i> L. var. <i>saccharifera</i>.


2016 ◽  
Vol 37 (2) ◽  
pp. 651 ◽  
Author(s):  
Geovani Soares de Lima ◽  
Hans Raj Gheyi ◽  
Reginaldo Gomes Nobre ◽  
Diego Azevedo Xavier ◽  
Lauriane Almeida dos Anjos Soares ◽  
...  

The use of saline water in agriculture has contributed to the expansion of irrigated areas, especially in arid and semiarid regions, where water deficits occur during various months of the year. In this context, this study aimed to evaluate the emergence, growth, and flowering of the castor bean cultivar “BRS Energia” as a function of the cationic composition of irrigation water, including water containing single and multiple types of cations. The experiment was carried out in a greenhouse in the municipality of Campina Grande-PB, Brazil using drainage lysimeters filled with a sandy loam Ultisol. The experiment was set in a randomized block design, with four replicates each of six water salinity treatments: Control; Na+; Ca2+; Na+ + Ca2+; K+; and Na+ + Ca2+ + Mg2, totaling 24 experimental plots, each consisting of five plants. Plants in the control treatment were subjected to irrigation using water having low electrical conductivity (ECw = 0.6 dS m-1), while the plants receiving other treatments were irrigated using 4.5 dS m-1 water containing different ions. Emergence and growth were more affected by the ECw than by the cationic composition of the irrigation water. The order of the cations in the irrigation water, in terms of negative effects, was Na+ > Na+ + Ca+ > Ca2+ > Na+ + Ca2+ + Mg2+ > K+. The cationic composition of the irrigation water influenced the time interval for inflorescence development and the opening of flower buds of the castor bean cultivar “BRS Energia”, and the most pronounced effects were observed in plants irrigated with calcic water.


Author(s):  
Geovani Soares de Lima ◽  
Francisco Wesley Alves Pinheiro ◽  
Adaan Sudário Dias ◽  
Hans Raj Gheyi ◽  
Saulo Soares da Silva ◽  
...  

This study was conducted to evaluate water status, cell damage and gas exchanges of West Indian cherry grown under saline water irrigation and nitrogen (N) fertilization in the post-grafting stage. The experiment was carried out in drainage lysimeters under greenhouse conditions in Regolithic Neosol with sandy loam texture. Treatments consisted of two levels of electrical conductivity of water (ECw) (0.8 and 4.5 dS m-1) and four N doses (70; 85; 100 and 115% of the N recommendation), arranged in randomized blocks, with three replicates. The dose relative to 100% corresponded to 200 g of N per plant per year. Irrigation with 4.5 dS m-1 electrical conductivity water resulted in a reduction in stomatal conductance, transpiration, CO2 assimilation rate and instantaneous carboxylation efficiency but increased cell damage percentage and internal CO2 concentration in West Indian cherry plants. Inhibition of CO2 assimilation rate in West Indian cherry plants is related to non-stomatal effects. Irrigation with 4.5 dS m-1 water and fertilization with 115% of N recommendation intensified leaf water saturation deficit in the West Indian cherry crop. The BRS Jaburu West Indian cherry was sensitive to 4.5 dS m-1 water salinity.


Sign in / Sign up

Export Citation Format

Share Document