scholarly journals Taxonomic Appraisal of Nodulation in the Leguminosae of Pakistan

2018 ◽  
Vol 36 (0) ◽  
Author(s):  
A. MAHMOOD ◽  
M. ATHAR

ABSTRACT: Rhizobia are gram negative bacteria that infect roots of leguminous plants and form root nodules. Legume-rhizobia symbioses are of practical importance in providing sustainable food supply and increased agricultural productivity. Existing lists published on the nodulating ability of Pakistani legumes were merged to compile a comprehensive list. The list contained 225 species distributed in 75 genera that were native to Pakistan. Legumes were arranged according to the recommendations of International Legume Database and Information Center (ILDIS) for legumes of south Asia. Out of 225 species examined, 28 belonged to Caesalpinioideae, 29 belonged to Mimosoideae and 168 belonged to Papilionoideae. The percentage of nodulation in Caesalpinioideae, Mimosoideae and Papilionoideae was 0%, 96%, 99% respectively. Conflicting reports on the nodulation status of some Caesalpiniod legumes have been discussed. Doubtful reports on nodulation may arise from inaccurate identification of root nodules. This is particularly due to the fact that structures like galls, tumors, knots, hypertrophies and mycorrhizae that grow on the roots bear superficial resemblance with nodules. It is interesting to note that major cases of doubtful nodulation reported in the past for Leguminosae concern Caesalpinioideae. The matter needs investigation at the molecular level. Present results confirm early findings that nodule formation is more commonly present than absent in Mimosoideae and Papilionoideae, the reverse is true for Caesalpinoideae.

Author(s):  
E. Loren Buhle ◽  
Pamela Rew ◽  
Ueli Aebi

While DNA-dependent RNA polymerase represents one of the key enzymes involved in transcription and ultimately in gene expression in procaryotic and eucaryotic cells, little progress has been made towards elucidation of its 3-D structure at the molecular level over the past few years. This is mainly because to date no 3-D crystals suitable for X-ray diffraction analysis have been obtained with this rather large (MW ~500 kd) multi-subunit (α2ββ'ζ). As an alternative, we have been trying to form ordered arrays of RNA polymerase from E. coli suitable for structural analysis in the electron microscope combined with image processing. Here we report about helical polymers induced from holoenzyme (α2ββ'ζ) at low ionic strength with 5-7 mM MnCl2 (see Fig. 1a). The presence of the ζ-subunit (MW 86 kd) is required to form these polymers, since the core enzyme (α2ββ') does fail to assemble into such structures under these conditions.


Forests ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 357
Author(s):  
Zhaohui Jia ◽  
Miaojing Meng ◽  
Chong Li ◽  
Bo Zhang ◽  
Lu Zhai ◽  
...  

Anthropogenic overexploitation poses significant threats to the ecosystems that surround mining sites, which also have tremendous negative impacts on human health and society safety. The technological capacity of the ecological restoration of mine sites is imminent, however, it remains a challenge to sustain the green restorative effects of ecological reconstruction. As a promising and environmentally friendly method, the use of microbial technologies to improve existing ecological restoration strategies have shown to be effective. Nonetheless, research into the mechanisms and influences of rock-solubilizing microbial inoculums on plant growth is negligible and the lack of this knowledge inhibits the broader application of this technology. We compared the effects of rock-solubilizing microbial inoculums on two plant species. The results revealed that rock-solubilizing microbial inoculums significantly increased the number of nodules and the total nodule volume of Robinia pseudoacacia L. but not of Lespedeza bicolor Turcz. The reason of the opposite reactions is possibly because the growth of R. pseudoacacia was significantly correlated with nodule formation, whereas L. bicolor’s growth index was more closely related to soil characteristics and if soil nitrogen content was sufficient to support its growth. Further, we found that soil sucrase activity contributed the most to the height of R. pseudoacacia, and the total volume of root nodules contributed most to its ground diameter and leaf area. Differently, we found a high contribution of total soil carbon to seedling height and ground diameter of L. bicolor, and the soil phosphatase activity contributed the most to the L. bicolor’ s leaf area. Our work suggests that the addition of rock-solubilizing microbial inoculums can enhance the supply capacity of soil nutrients and the ability of plants to take up nutrients for the promotion of plant growth. Altogether, our study provides technical support for the practical application of rock-solubilizing microbes on bare rock in the future.


1976 ◽  
Vol 194 (1116) ◽  
pp. 285-293 ◽  

In cross-inoculation trials, inocula containing the nodule endophytes of Myrica gale, M. cerifera, M. cordifolia and M. pilulifera respectively were applied to the roots of young plants of M. faya Ait. growing in nitrogen-free culture solution. All four inocula induced nodule formation, and except where the M. gale inoculum had been used the nodules were of effective type and enabled the plants bearing them to grow nearly as well as other M. faya plants associated with the normal endophyte. The nodules induced by the M. gale endophyte were very numerous, but remained small and fixed no significant amount of nitrogen, and were thus ineffective. Light and electron microscopy showed that in the effective nodules induced by the normal endophyte or by that of M. cordifolia , the endophyte was confined to a layer 1-2 cells deep near the middle of the nodule cortex, and that in respect of the width of the hyphae and their production of club-shaped internally subdivided vesicles, the endophytes resembled closely those in the nodules of the few other species of Myrica that have been studied by modern methods of microscopy. In ineffective nodules the disposition of the infected cells was unchanged, but within the cells only a sparse development of the endophyte was observed, and no vesicles were found. The finding that nodules lacking vesicles showed little or no fixation is consistent with other evidence that the vesicles normally produced by non-legume nodule endophytes are the main site of nitrogen fixation.


PRILOZI ◽  
2015 ◽  
Vol 36 (1) ◽  
pp. 5-36 ◽  
Author(s):  
Katarina Davalieva ◽  
Momir Polenakovic

Abstract Prostate cancer (PCa) is the second most frequently diagnosed malignancy in men worldwide. The introduction of prostate specific antigen (PSA) has greatly increased the number of men diagnosed with PCa but at the same time, as a result of the low specificity, led to overdiagnosis, resulting to unnecessary biopsies and high medical cost treatments. The primary goal in PCa research today is to find a biomarker or biomarker set for clear and effecttive diagnosis of PCa as well as for distinction between aggressive and indolent cancers. Different proteomic technologies such as 2-D PAGE, 2-D DIGE, MALDI MS profiling, shotgun proteomics with label-based (ICAT, iTRAQ) and label-free (SWATH) quantification, MudPIT, CE-MS have been applied to the study of PCa in the past 15 years. Various biological samples, including tumor tissue, serum, plasma, urine, seminal plasma, prostatic secretions and prostatic-derived exosomes were analyzed with the aim of identifying diagnostic and prognostic biomarkers and developing a deeper understanding of the disease at the molecular level. This review is focused on the overall analysis of expression proteomics studies in the PCa field investigating all types of human samples in the search for diagnostics biomarkers. Emphasis is given on proteomics platforms used in biomarker discovery and characterization, explored sources for PCa biomarkers, proposed candidate biomarkers by comparative proteomics studies and the possible future clinical application of those candidate biomarkers in PCa screening and diagnosis. In addition, we review the specificity of the putative markers and existing challenges in the proteomics research of PCa.


Author(s):  
Thomas Duve

Legal anthropology has to understand and deal with complex and often plural constellations of normative bodies, legal discourses, institutions, and practices. They shape the legal regimes people live in. These legal regimes as well as the ways in which societies operate with legal diversity have developed over time. History has done more than shape the vocabulary and the grammar of each community’s law. The narratives we produce about the past are also used to construct and express individual and social identities. Thus, history and its (re)construction by later generations can impose constraints and limit available options, but also open spaces of negotiation and provide for innovation. Legal regimes of the past are often called ‘legal traditions’. In the last decades, the idea of ‘legal traditions’ has gained considerable practical importance. Especially in former colonial countries, and due to the increasing recognition of the rights of Indigenous Peoples in international and national law, many actors are drawing on history to claim rights and obligations for the present and the future. In a similar manner, some historical legal regimes seem to embody injustice, leading to pleas for the recognition of their unjust character or even for material compensation. The aim of this chapter is to offer some reflections on the concept of ‘legal traditions’ and its role in constructing our identities and shaping our present legal regimes.


2020 ◽  
Vol 10 ◽  
pp. 115-120
Author(s):  
Sultanov Mukhtor Mamadalievich ◽  
Dzhumaev Mamanazar Irgashevich

Over the past thirty years, many reforms have been carried out in the education of intellectually, physically perfect youth. Mathematics is identified as one of the priority areas for the development of science in our country in 2020. Over the past period, a number of systematic works have been carried out aimed at raising mathematical science to a qualitatively new level. In order to further improve the system of teaching mathematical science at all levels of education, to support the effective work of teachers, to expand the scale and practical importance of scientific research, strengthen ties with the international community, and also fulfill the tasks identified in the State Program for the Implementation of the Five-Step Action Strategy priority areas of development of the Republic of Uzbekistan in 2017 - 2021 in the "Year of the development of science, education and the digital economy".


Water Policy ◽  
2021 ◽  
Author(s):  
Liang Wu ◽  
Min Wang ◽  
Kirti Avishek

Abstract Rice is an important staple food for more than half of the global population and one of the largest water consumers on earth. Improving the efficiency of water embedded in rice production and supply could have great implications for food and water security. This study starts from Yunnan, a traditional rice producing and consuming province in southwest China, and analyses its rice supply structure and dynamics, together with embedded water footprints (WFs) of three other regions: Northeast China, South and Southwest China and Southeast Asia. The results show that Yunnan has been under through drastic food change in the past decades, leading to increasing production and supply gap. Yunnan is found to have the least WF (778.2 m3/t) for rice production across the study regions, while Northeast China consumes the highest blue WF (364.6 m3/t) and blue to total WF ratio (97.7%). The study indicates that Northeast China is at risk of groundwater deficit due to rice production and export and the current rice production and consumption pattern is inefficient. The study suggests that policies for groundwater extraction, water resource price and international trade need to be in place to ensure sustainable food supply and water use at regional and national levels.


2006 ◽  
Vol 361 (1473) ◽  
pp. 1565-1574 ◽  
Author(s):  
Marie T Filbin

In the past decade there has been an explosion in our understanding, at the molecular level, of why axons in the adult, mammalian central nervous system (CNS) do not spontaneously regenerate while their younger counterparts do. Now a number of inhibitors of axonal regeneration have been described, some of the receptors they interact with to transduce the inhibitory signal are known, as are some of the steps in the signal transduction pathway that is responsible for inhibition. In addition, developmental changes in the environment and in the neurons themselves are also now better understood. This knowledge in turn reveals novel, putative sites for drug development and therapeutic intervention after injury to the brain and spinal cord. The challenge now is to determine which of these putative treatments are the most effective and if they would be better applied in combination rather than alone. In this review I will summarize what we have learnt about these molecules and how they signal. Importantly, I will also describe approches that have been shown to block inhibitors and encourage regeneration in vivo . I will also speculate on what the differences are between the neonatal and adult CNS that allow the former to regenerate and the latter not to.


2020 ◽  
Author(s):  
Candice Chapouly ◽  
Pierre-Louis Hollier ◽  
Sarah Guimbal ◽  
Lauriane Cornuault ◽  
Alain-Pierre Gadeau ◽  
...  

AbstractEvidences accumulated within the past decades, identified Hedgehog (Hh) signaling as a new regulator of micro-vessel integrity. More specifically, we recently identified Desert Hedgehog (Dhh) as a downstream effector of Klf2 in endothelial cells (ECs).ObjectiveThe purpose of this study is to investigate whether Hh co-receptors Gas1 and Cdon may be used as therapeutic targets to modulate Dhh signaling in ECs.Methods and resultsWe demonstrated that both Gas1 and Cdon are expressed in adult ECs and relied on either siRNAs or EC specific conditional KO mice to investigate their role. We found that Gas1 deficiency mainly photocopies Dhh deficiency especially by inducing VCAM-1 and ICAM-1 overexpression while Cdon deficiency has opposite effects by promoting endothelial junction integrity. At a molecular level, Cdon prevents Dhh binding to Ptch1 and thus acts a decoy receptor for Dhh, while Gas1 promotes Dhh binding to Smo and as a result potentiates Dhh effects. Since Cdon is overexpressed in ECs treated by inflammatory cytokines including TNFα and Il1β, we then tested whether Cdon inhibition would promote endothelium integrity in acute inflammatory conditions and found that both fibrinogen and IgG extravasation were decreased in association with an increased Cdh5 expression in the brain cortex of EC specific Cdon KO mice administered locally with Il1β.ConclusionAltogether these results demonstrate that Gas1 is a positive regulator of Dhh in ECs while Cdon is a negative regulator. Interestingly Cdon blocking molecules may then be used to promote endothelium integrity at least in inflammatory conditions.


Author(s):  
Elena Aikawa ◽  
Mark C. Blaser

Cardiovascular calcification is an insidious form of ectopic tissue mineralization that presents as a frequent comorbidity of atherosclerosis, aortic valve stenosis, diabetes, renal failure, and chronic inflammation. Calcification of the vasculature and heart valves contributes to mortality in these diseases. An inability to clinically image or detect early microcalcification coupled with an utter lack of pharmaceutical therapies capable of inhibiting or regressing entrenched and detectable macrocalcification has led to a prominent and deadly gap in care for a growing portion of our rapidly aging population. Recognition of this mounting concern has arisen over the past decade and led to a series of revolutionary works that has begun to pull back the curtain on the pathogenesis, mechanistic basis, and causative drivers of cardiovascular calcification. Central to this progress is the discovery that calcifying extracellular vesicles act as active precursors of cardiovascular microcalcification in diverse vascular beds. More recently, the omics revolution has resulted in the collection and quantification of vast amounts of molecular-level data. As the field has become poised to leverage these resources for drug discovery, new means of deriving relevant biological insights from these rich and complex datasets have come into focus through the careful application of systems biology and network medicine approaches. As we look onward toward the next decade, we envision a growing need to standardize approaches to study this complex and multifaceted clinical problem and expect that a push to translate mechanistic findings into therapeutics will begin to finally provide relief for those impacted by this disease.


Sign in / Sign up

Export Citation Format

Share Document