scholarly journals Effect of fluoride solutions on the shear bond strength of orthodontic brackets

2012 ◽  
Vol 23 (6) ◽  
pp. 698-702 ◽  
Author(s):  
Gabriela da Rocha Leódido ◽  
Hianna Oliveira Fernandes ◽  
Mateus Rodrigues Tonetto ◽  
Cristina Dupim Presoto ◽  
Matheus Coêlho Bandéca ◽  
...  

The aim of this in vitro study was to evaluate the shear bond strength of brackets after pre-treatment with different fluoride solutions. This study used 48 freshly extracted sound bovine incisors that were randomly assigned to 4 experimental groups (n=12). CG: (control) without treatment; NF: 4 min application of neutral fluoride; APF: application of 1.23% acidulated phosphate fluoride (APF) for 4 min; and SFV: application of 5% sodium fluoride varnish for 6 h. For each group, after surface treatment, prophylaxis of enamel and bracket bonding with Transbond XT composite resin (3M) were performed following the manufacturer's specifications. The shear bond strength was performed with a universal testing machine 24 h after fixing the brackets. The tooth surfaces were analyzed to verify the adhesive remnant index (ARI). Data were analyzed statistically by ANOVA and Tukey's test (α=0.05). There was statistically significant difference among the groups (p<0.0001). CG and NF groups presented significantly higher bond strength than APF and SFV. There was no significant difference between CG and NF or between APF and SFV (p>0.05). The analysis of ARI scores revealed that most failures occurred at the enamel-resin interface. It may be concluded that the pre-treatment of enamel with 1.23% APF and 5% SFV prior to fixing orthodontic brackets reduces shear bond strength values.

2021 ◽  
Vol 58 (1) ◽  
pp. eUJ3657
Author(s):  
Germano Brandão ◽  
◽  
Liliana Ávila Maltagliati ◽  
Ana Carla Raphaelli Nahás-Scocate ◽  
Murilo Matias ◽  
...  

The objective of this in vitro study was to assess and compare the shear bond strength of conventional and modified orthodontic tubes bonded to the surface of dry and saliva-contaminated enamel. The sample consisted of 40 human teeth, which were randomly divided into four groups according to attachment base and presence or absence of saliva contamination as follows: Group CB, conventional orthodontic tubes without salivary contamination; Group CB-S, conventional orthodontic tubes with salivary contamination; Groups BM, orthodontic tubes modified by welding a metal mesh to their base without salivary contamination; and Group BM-S, modified orthodontic tubes with salivary contamination. Shear bond strength test was performed in a universal testing machine and analysis of the adhesive remnant index (ARI) by optical microscopy. Two-way ANOVA was used, followed by Tukey’s test at a statistical significance level of 5%. The ARI results were analysed descriptively. There was statistically significant difference between the groups regarding the shear bond strength values, with conventional tubes presenting significantly higher values (P < 0.05). In addition, the presence of salivary contamination interfered negatively with the behaviour of conventional tubes only (P < 0.05). Shear bond strength was not improved by increasing the area of the orthodontic tubes. Moreover, salivary contamination influenced negatively the SBS values, but only when conventional tubes were used.


2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Gisele Lima Bezerra ◽  
Carlos Rocha Gomes Torres ◽  
Mateus Rodrigues Tonetto ◽  
Alvaro Henrique Borges ◽  
Milton Carlos Kuga ◽  
...  

The objective of this study is to assess,in vitro, the shear bond strength of orthodontic brackets fixed with remineralizing adhesive systems submitted to thermomechanical cycling, simulating one year of orthodontic treatment. Sixty-four bovine incisor teeth were randomly divided into 4 experimental groups (n=16):XT: Transbond XT,QC: Quick Cure,OL: Ortholite Color, andSEP: Transbond Plus Self-Etching Primer. The samples were submitted to thermomechanical cycling simulating one year of orthodontic treatment. Shear bond strength tests were carried out using a universal testing machine with a load cell of 50 KgF at 0.5 mm/minute. The samples were examined with a stereomicroscope and a scanning electron microscope (SEM) in order to analyze enamel surface and Adhesive Remnant Index (ARI). Kruskal-Wallis and Mann-Whitney (with Bonferroni correction) tests showed a significant difference between the studied groups (p<0.05). Groups XT, QC, and SEP presented the highest values of adhesive resistance and no statistical differences were found between them. The highest frequency of failures between enamel and adhesive was observed in groups XT, QC, and OL. Quick Cure (QC) remineralizing adhesive system presented average adhesive resistance values similar to conventional (XT) and self-etching (SEP) adhesives, while remineralizing system (OL) provided the lowest values of adhesive resistance.


Author(s):  
Mohammad Moslem Imani ◽  
Farzaneh Aghajani ◽  
Nafiseh Momeni ◽  
Mohammad Sadegh Ahmad Akhoundi

Objectives: In clinical conditions, orthodontic brackets are exposed to periodic stresses mainly induced by mastication and intraoral forces. The objective of the present study was to evaluate the effects of cyclic loading to simulate masticatory forces on shear bond strength (SBS) of metal brackets bonded to teeth using self-etch and total-etch bonding systems. Materials and Methods: Eighty-four caries- and crack-free bovine mandibular incisors were selected and randomly assigned to two groups based on the type of bonding system. After bonding, all samples were thermocycled (500 cycles) followed by cyclic loading of the half of the specimens in each group by applying 40 N load with 2 Hz frequency for 10,000 cycles. The SBS was measured using a universal testing machine. The adhesive remnant index (ARI) score was calculated subsequently. Data were analyzed using Kolmogorov-Smirnov test, two-way ANOVA and Mann-Whitney test. Results: The SBS was 10.09±3.78 MPa and 14.44±6.06 MPa for self-etch and total-etch bonding systems in cyclic loading group, respectively. The SBS was 9.43±5.3 MPa and 11.31±5.42 MPa in self-etch and total-etch groups without cyclic loading, respectively. Cyclic loading did not cause any significant difference in SBS (P>0.05). The ARI scores of the groups were significantly different (P<0.05). Conclusions: The present results demonstrated that low masticatory forces at 10,000 cycles did not have a significant impact on bracket-adhesive SBS; however, they significantly changed the ARI score. Even though the total-etch bonding system yielded higher SBS than the self-etch system, the performance of both was clinically acceptable.


2012 ◽  
Vol 3 (1) ◽  
pp. 41-49
Author(s):  
BM Shivalinga ◽  
H Jyothikiran ◽  
Amit Goyal

ABSTRACT Aims To determine the effect of self-etchant pH on shear bond strength of orthodontic brackets; to compare the shear bond strengths of brackets bonded with three SEPs and brackets bonded with conventional etch, rinse, bond method and to find the brackets/adhesive failure mode. Materials and methods One hundred and twenty premolar teeth were cleaned, mounted, and randomly divided into four groups of 30 samples each- Transbond XT conventional etch and bond system (control), Adper SE Plus SEP (3M ESPE) with a pH of 0.9 to 1.0, Transbond Plus SEP (3M Unitek) with a pH of about 1.0 and Clearfil SE Bond SEP (Kuraray America) with a pH of around 2.0. All teeth were bonded with Transbond XT paste (3M Unitek). The teeth were debonded within half an hour after initial bonding by using a universal testing machine. The residual adhesive on each tooth was evaluated. ANOVA was used to compare the shear bond strength (SBS) of the three groups, and the Chi-square test was used to compare the adhesive remnant index (ARI) scores for the three groups. Results ANOVA indicated significant differences between the groups. Clearfil attained the SBS (6.5 ± 0.6689 MPa) closest to the control group, whereas Adper inspite of being the most aggressive recorded the lowest SBS (5.7 ± 0.5695 MPa). Transbond self-etching primer achieved a mean SBS of 6.1 ± 0.6211 MPa. However, all the three SEPs recorded SBS which was significantly less than that of Transbond conventional etch, rinse and bond system (11.8027 ± 0.8059 MPa). The comparisons of the ARI scores between the three groups indicated that bracket failure mode was significantly different between the three groups (p < 0.05). Conclusion These findings show that factors other than pH, such as the ability of the bonding adhesive to form a chemical bond to enamel and the strength of the bonding adhesive itself, significantly influence the SBS of orthodontic brackets. How to cite this article Goyal A, Jyothikiran H, Shivalinga BM. Effect of Self-etchant pH on Shear Bond Strength of Orthodontic Brackets: An in vitro Study. World J Dent 2012;3(1):41-49.


2018 ◽  
Vol 7 (2) ◽  
pp. 28-31
Author(s):  
Varunjeet Chaudhary ◽  
Sanad Singh Solanki ◽  
Varsha Yadav ◽  
Seema Lahoti

Objective: To evaluate the shear bond strength of stainless steel brackets bonded with fluoride-releasing composite resins, comparing effect of adhesion booster and conventional primer.Materials & Method: Sixty extracted premolars were subjected to bracket bonding with fluoride-releasing composite resin; which were bonded by randomly divided into two groups of bonding agents: Group 1- conventional primer as control group, Group 2- adhesion booster. After bonding, the samples were thermocycled (500 cycles) at 5ºC and 55ºC temperatures. After 48 hours they were subjected to shear bond strength testing in occluso-gingival direction, using an MTS 810 Universal Testing Machine with load speed of 0.5 mm/min.Result: Mean shear bond strength was significantly more in samples bonded with adhesion booster (14.792±3.805 Mpa) as compared to conventional primers (11.327±4.047 Mpa). There was statistically significant difference in shear bond strength between the groups (p=0.001).Conclusion: The use of the adhesion booster significantly increased the bond strength of bracket bonded with fluoride-releasing composite.


2019 ◽  
Vol 53 (2) ◽  
pp. 135-140
Author(s):  
Ananta Singh ◽  
Sudhir Kapoor ◽  
Praveen Mehrotra ◽  
Jitendra Bhagchandani ◽  
Sonahita Agarwal

Context: As lingual bonded retainers are required for long-term retention in the oral cavity, the wire-composite combination of choice may be the determining factor for the success of lingual bonded retainers. Aim: We compared the shear bond strength of different wire-composite combinations used for lingual bonded retainers and identified the combination of choice for lingual retention in terms of the shear bond strength. Materials and Methods: A total of 108 extracted human maxillary premolars in pairs were divided into 6 groups of 9 samples each. Three different types of retainer wires (namely, Respond [Ormco Corp., Orange, CA, USA], Leone Ligature Wire [Leone S.p.a., Firenze, Italy], and SRW™ Stranded Retention Wire [Ortho Classic Inc., USA]) were bonded to the teeth with the composites (G-aenial™ Universal Flo and Tetric N-Flow). The shear bond strength was measured on debonding using universal testing machine INSTRON. Results: The maximum shear bond strength (58.28 N) was observed in group IV (Respond wire with Tetric N-Flow), whereas the minimum (25.28 N) was observed in group VI (SRW™ Stranded Retention Wire with Tetric N-Flow). A highly significant difference was observed when the shear bond strength of group IV was compared with all the other groups. Conclusions: The maximum shear bond strength was observed in the wire-composite combination of Respond dead-soft wire with Tetric N-Flow composite. Therefore, it could be the wire-composite combination of choice for bonded lingual retainer.


2020 ◽  
Vol 23 (1) ◽  
Author(s):  
Menna Ahmed ElGendy ◽  
Ihab Mosleh ◽  
Hanaa Zaghloul

Objective: the purpose of the study was to evaluate the micro-shear bond strength of different cements to translucent zirconia before and after thermocycling aging. Material and methods: Twelve translucent zirconia ceramic discs were used in the study. Specimens were sandblasted using 50 ‎μm aluminum oxide (Al2O3) particles. The specimens were divided into three groups (n = 4) according to the cement type: Panavia resin cement (control group), resin modified glass ionomer (RMGI), and Activa bioactive cement. Each group was further sub-divided into two equal subgroups (n = 2) according to whether the specimens were subjected to thermocycling or not. Thermocycling was performed in distilled water at 5000 cycles between 5 oC - 55 oC. The micro-shear bond strength test (μSBS) was measured using universal testing machine. Kruskal-Wallis test was used to compare between the three cements. Dunn’s test was used for pair-wise comparisons when Kruskal-Wallis test is significant. Mann-Whitney U test was used to compare between micro-shear bond strength before and after thermocycling P ≤ 0.05. Results: In non-aged subgroups, there was no significant difference between Panavia and Activa; both showed significantly the highest mean μSBS values (22.9 MPa, 31.3 MPa respectively). While, RMGI showed the lowest μSBS values (4.7 MPa).  In thermocycled subgroups, Panavia showed significantly the highest mean μSBS values (32.2 MPa). There was no significant difference between RMGI and Activa; both showed the lowest significant mean μSBS values (3.2 MPa and 8.7 MPa respectively). Conclusions: RMGI and Activa couldn’t be considered long-term reliable materials for cementing zirconia. However, Panavia provided the most durable bond to zirconia.KEYWORDSBioactive cement; Micro-shear bond strength; Resin cement; Translucent zirconia.


2018 ◽  
Vol 25 (05) ◽  
pp. 676-679
Author(s):  
Muhammad Azeem ◽  
Arfan ul Haq ◽  
Javed Iqbal

Introduction: Bracket bonding on filled tooth surfaces is sometimes requiredin clinical orthodontic practice. The objective was to compare mean shear bond strength(SBS) of metal brackets on diamond bur roughened versus no treatment composite surfaces.Study Design: In Vitro, Comparative study. Period: January 2017 to October 2017. Setting:Orthodontic Department, Faisalabad Medical University. Materials & Methods: 30 extractedhuman premolars were used. They were randomly divided into two groups of 15 teeth. In group-I,metal brackets were bonded to composite with no surface treatment. In group-II, brackets werebonded after roughening composite surface with diamond bur. SBS was measured usinguniversal testing machine. Results: SBS of metal brackets bonded with no surface treatmentwas significantly lower than diamond bur roughened group. Conclusion: Composite surfacetreatment with diamond bur roughening increased shear bond strength of orthodontic brackets.


2021 ◽  
Vol 12 (5) ◽  
pp. 6863-6872

In this experimental study, the effects of Er,Cr:YSGG laser on the shear bond strength (SBS) of brackets bonded to two ceramic surfaces (Feldspathic and IPS Empress II) were compared to hydrofluoric (HF) acid etching. 60 ceramic discs were prepared, including two groups: Feldspathic and IPS Empress II surfaces. In each group, the following subgroups were prepared: 2W Er,Cr:YSGG laser, 2.5W Er,Cr:YSGG laser, and HF acid-etching. Ceramic primer and adhesive resin composite were applied and then light-cured to bond the ceramic cylinders to brackets. The samples were stored in distilled water for 24h and then, thermocycled. SBS testing was performed with a universal testing machine. Two-way ANOVA was used to compare SBS among subgroups (P<0.05). The highest SBS was seen in feldspathic surfaces with HF preparation (14.61±3.11MPa). There was a significant difference in SBS between different surface treatments except between the laser groups of IPS Empress II. Also, feldspathic surfaces had significantly higher SBS than IPS Empress II in all groups except HF. Conventional surface treatment provides much stronger adhesion than laser regardless of the ceramic type. Er,Cr:YSGG laser is effective on the SBS of the feldspathic ceramics, but not in IPS Empress II ceramics. So, laser treatment can be recommended as a favorable setting for treating feldspathic surfaces.


2021 ◽  
Vol 13 (4) ◽  
pp. 650-655
Author(s):  
Ali Alqerban

The present laboratory study aimed to assess shear bond strength (SBS) of orthodontic metal brackets bonded to different ceramic and polymer-based restorations after artificial aging. Eighty metal brackets were bonded using Transbond-X to eighty disks which were fabricated using five different ceramic and polymer-based materials (n = 16): group LD: lithium disilicate ceramic, group LS: zirconia-reinforced lithium silicate ceramic, group PI: polymer-infiltrated ceramic, group FC: feldspathic ceramic, and group PM: Polymethyl methacrylate PMMA. Bonded specimens were stored in distilled water (37 °C) for 24 h before they underwent 37,500 thermal cycles between 5 °C and 55 °C. After storage, the SBS was performed using a universal testing machine. Then, the data was analyzed using one-way analysis of variance (ANOVA) and Tukey’s test (α = 0.05). A 2-dimensional topographic analysis of the specimens was performed using atomic force microscopy. The Adhesive Remaining Index (ARI) was also evaluated at 50x magnification. A significant difference was observed between SBS means in the different groups’ materials (P < 0.05). The outcomes of the LD and LS groups were similar (17.55± 0.63 MPa and 18.26±0.33 MPa) but different from those of the PM, PI, and FC groups (15.23±0.29 MPa, 14.22 ±0.56 MPa, and 12.68 ±0.86 MPa). For FC group, however, it provided statistically significantly lower SBS than the other groups. There was predominance of score 3 for ARI in all groups. The type of dental substrate has a significant influence to the shear bond strength of the metal brackets.


Sign in / Sign up

Export Citation Format

Share Document