scholarly journals Morphological changes of Sertoli cells during the male reproductive cycle of the teleost Piaractus mesopotamicus (Holmberg, 1887)

2005 ◽  
Vol 65 (2) ◽  
pp. 241-249 ◽  
Author(s):  
C. Cruz-Landim ◽  
F. C. Abdalla ◽  
M. A. Cruz-Höfling

An investigation of the histological and ultrastructural changes of Sertoli cells during the male reproductive cycle in Piaractus mesopotamicus was made. The results showed that the Sertoli cell development is closely related with germ cell maturation. Therefore, these cells may have some role in germ cell maturation during the reproductive cycle of this species, whether in forming a tissue framework for the developing spermatogenic cysts, aiding in testes reorganization for a new reproductive cycle, in addition to other possible functions discussed in the text.

Endocrinology ◽  
2011 ◽  
Vol 152 (5) ◽  
pp. 2076-2089 ◽  
Author(s):  
Catherine Itman ◽  
Chin Wong ◽  
Briony Hunyadi ◽  
Matthias Ernst ◽  
David A. Jans ◽  
...  

The establishment and maturation of the testicular Sertoli cell population underpins adult male fertility. These events are influenced by hormones and endocrine factors, including FSH, testosterone and activin. Activin A has developmentally regulated effects on Sertoli cells, enhancing proliferation of immature cells and later promoting postmitotic maturation. These differential responses correlate with altered mothers against decapentaplegic (SMAD)-2/3 signaling: immature cells signal via SMAD3, whereas postmitotic cells use both SMAD2 and SMAD3. This study examined the contribution of SMAD3 to postnatal mouse testis development. We show that SMAD3 production and subcellular localization are highly regulated and, through histological and molecular analyses, identify effects of altered Smad3 dosage on Sertoli and germ cell development. Smad3+/− and Smad3−/− mice had smaller testes at 7 d postpartum, but this was not sustained into adulthood. Juvenile and adult serum FSH levels were unaffected by genotype. Smad3-null mice displayed delayed Sertoli cell maturation and had reduced expression of androgen receptor (AR), androgen-regulated transcripts, and Smad2, whereas germ cell and Leydig cell development were essentially normal. This contrasted remarkably with advanced Sertoli and germ cell maturation and increased expression of AR and androgen-regulated transcripts in Smad3+/− mice. In addition, SMAD3 was down-regulated during testis development and testosterone up-regulated Smad2, but not Smad3, in the TM4 Sertoli cell line. Collectively these data reveal that appropriate SMAD3-mediated signaling drives normal Sertoli cell proliferation, androgen responsiveness, and maturation and influences the pace of the first wave of spermatogenesis, providing new clues to causes of altered pubertal development in boys.


2009 ◽  
Vol 297 (4) ◽  
pp. E907-E914 ◽  
Author(s):  
María F. Riera ◽  
María N. Galardo ◽  
Eliana H. Pellizzari ◽  
Silvina B. Meroni ◽  
Selva B. Cigorraga

Sertoli cells provide the physical support and the necessary environment for germ cell development. Among the products secreted by Sertoli cells, lactate, the preferred energy substrate for spermatocytes and spermatids, is present. Considering the essential role of lactate on germ cell metabolism, it is supposed that Sertoli cells must ensure its production even in adverse conditions, such as those that would result from a decrease in glucose levels in the extracellular milieu. The aim of the present study was to investigate 1) a possible effect of glucose deprivation on glucose uptake and on the expression of glucose transporters in rat Sertoli cells and 2) the participation of different signal transduction pathways in the above-mentioned regulation. Results obtained show that decreasing glucose levels in Sertoli cell culture medium provokes 1) an increase in glucose uptake accompanied by only a slight decrease in lactate production, 2) an increase in GLUT1 and a decrease in GLUT3 expression, and 3) an activation of AMP-activated protein kinase (AMPK)-, phosphatidylinositol 3-kinase (PI3K)/PKB-, and p38 MAPK-dependent pathways. Additionally, by using specific inhibitors of these pathways, a possible participation of AMPK- and p38MAPK-dependent pathways in the regulation of glucose uptake and GLUT1 expression is shown. These results suggest that Sertoli cells adapt to conditions of glucose deprivation to ensure an adequate lactate concentration in the microenvironment where germ cell development occurs.


2008 ◽  
Vol 20 (1) ◽  
pp. 189
Author(s):  
J. Baldrighi ◽  
W. Averhart ◽  
M. Mello ◽  
J. Ford ◽  
L. Franca ◽  
...  

Currently, swine biotechnologies related to reproduction increase considerably. Investments are made in order to improve the reproductive rates and performance of breeding stock. Understanding the physiology of spermatogenesis will help increase sperm production and improve boar efficiency. Sertoli cells are the only somatic cells present in the seminiferous tubules. Their function is to guarantee proper sperm formation and maturation. Each Sertoli cell is responsible for nursing a finite number of spermatogonia. At puberty, Sertoli cell maturation and lumen formation have occurred within the seminiferous tubules and germ cells have proliferated rapidly followed by the onset of spermatogenesis. At least two hormones are known to play a role in Sertoli cell proliferation and maturation: follicle-stimulating hormone (FSH) and thyroid hormone. FSH secretion has been assumed to be the stimulus for proliferation. The thyroid hormone is responsible for normal postnatal growth and development. Alterations in thyroid activity have frequently been associated with changes in male reproductive functions, since hypothyroidism, induced with 6-N-propyl-2-thiouracil (PTU) soon after birth, is associated with a marked delay in sexual maturation and development. The goal of this study was to report the effect of FSH and PTU on the stages of sperm cell development of young pigs. Six piglets of 1, 7, 14, 25, and 55 days of age were castrated and their testes were sectioned to grafts of 5 mm3. The grafts were then transplanted subcutaneously into the dorsum of 12 castrated nude mice per age group. Two days post-surgery mice were randomly assigned to one of four treatment groups: control, FSH (5 IU rFSH), PTU (0.015% solution), and FSH + PTU. Following 14 days of treatment, testicular tissue pieces were allowed to grow for 2 additional weeks. Tissues were then harvested, immersion-fixed in neutral buffered formalin, and embedded in paraffin. Five-micron-thick sections were stained using hematoxylin and eosin. Slides were evaluated under light microscopy and the oldest germ cell type present in each section was recorded. Germ cell types were recorded as spermatogonium, spermatocyte, early spermatid, and late spermatid. Statistical differences between all groups were detected using paired Student t-tests. There were no differences noted between control groups and those treated with PTU or FSH alone. No effect concerning age of castration on grafts development was observed. There was a slightly significant increase (P = 0.05) in the number of spermatocytes observed in the groups treated with FSH+PTU. These data suggest that there is a potential synergistic effect of FSH and PTU on sperm cell development. Based on these results, further studies need to be performed to completely understand the effect of these two hormones on Sertoli cells.


2010 ◽  
Vol 22 (1) ◽  
pp. 315
Author(s):  
J. R. Rodriguez-Sosa ◽  
G. M. J. Costa ◽  
R. Rathi ◽  
L. R. França ◽  
I. Dobrinski

In rodents, thyroid hormones inhibit Sertoli cell proliferation, promote Sertoli cell differentiation, and accelerate lumen formation in the seminiferous tubules. Conversely, transient hypothyroidism prolongs Sertoli cell proliferation, leading to increased Sertoli cell number and testicular size. In order to evaluate whether 6-N-propyl-2-thiouracil (PTU)-induced hypothyroidism in the host mouse would affect seminiferous tubule development and germ cell differentiation, and subsequently increase spermatogenesis in bovine testis xenografts, fragments (∼1 mm3) of testes from 1-wk-old Holstein calves (n = 6) were transplanted ectopically to castrated immunodeficient male mice (n = 6/donor). Mice (n = 3/donor) were treated with 0.1% (w/v) PTU in drinking water for 4 weeks or left as control. At 5 and 7 months after grafting, grafts were analyzed by morphometry and immunohistochemistry for expression of protein gene product 9.5 (PGP 9.5) as a germ cell marker, and Mullerian-inhibiting substance (MIS) and androgen receptor (AR) to assess Sertoli cell maturation. For each variable, averages of each group were compared at each collection point by t-test PTU treatment to the drinking water for 1 month suppressed thyroid hormone levels (T4) in host mice without negative systemic effects (0.3 ± 0.2 v. 4 ± 0.3 μg dL-1 at 4 weeks in treated v. control mice, respectively, P < 0.05). Spermatogenesis in recovered grafts was arrested at meiosis regardless of treatment and collection time. Graft weight was lower in treated mice than in controls (21 ± 4 v. 42 ± 5 and 24 ± 9 v. 51 ± 5 mg, at 5 and 7 months, respectively, P < 0.05). Volume density of the tubular and intertubular compartments, and seminiferous epithelium, was not affected by treatment (P > 0.05); however, treatment reduced lumen density compared to controls (9 ± 2 v. 19 ± 3 and 12 ± 1 v. 24 ± 4%) and tubular diameter (121 ± 3 v. 140 ± 7 and 144 ± 2v. 170 ± 2 (im, at 5 and 7 months, respectively (P < 0.05). Tubule length per milligram was not different at 5 months between control and treated groups (P > 0.05) but was increased at 7 months in the treated grafts (50 ± 1 v. 30 ± 1 cm, P < 0.05). Number of Sertoli cells per milligram was not affected by treatment (P > 0.05). However, Sertoli cell volume was increased in controls (440 ± 19 v. 341 ± 14 and 504 ± 6 v. 388 ± 18 μm3, at 5 and 7 months, respectively, P < 0.05). The number of germ cells per 100 Sertoli cells was not different between groups at any collection time (P > 0.05). Sertoli cells showed variable MIS expression and lack of or weak AR expression regardless of treatment and collection time, indicating an immature phenotype. In conclusion, suppression of thyroid hormone levels in host mice affects seminiferous tubule development in bovine testis xenografts, demonstrating that endocrine manipulation of the mouse host will affect xenografts in a predictable manner. However, treatment did not affect number and differentiation of germ cells. Rather, incomplete Sertoli cell maturation appears to lead to incomplete germ cell differentiation in bovine testis xenografts. Supported by USDA (2007-35203-18213).


2009 ◽  
Vol 296 (5) ◽  
pp. E1022-E1028 ◽  
Author(s):  
Charles M. Allan ◽  
Patrick Lim ◽  
Mathew Robson ◽  
Jenny Spaliviero ◽  
David J. Handelsman

We have characterized the in vivo actions of human wild-type FSH receptor (FSHR) overexpressed in Sertoli cells of transgenic (Tg) mice ( TgFSHRwt) compared with transgenic overexpression of the human activated mutant FSHR*D567G ( TgFSHR*D567G). Testicular TgFSHRwt expression significantly elevated specific FSH binding (>2-fold, P < 0.01) relative to nontransgenic testes, similar to increased FSH binding in TgFSHR*D567G testes. Isolated TgFSHRwt Sertoli cells exhibited higher FSH-stimulated cAMP levels compared with non- Tg or TgFSHR*D567G cells but did not display the elevated FSH-independent basal cAMP levels found in TgFSHR*D567G Sertoli cells. Furthermore, Sertoli cell overexpression of TgFSHR*D567G but not TgFSHRwt allowed promiscuous cAMP responses to human chorionic gonadotropin (300 IU/ml) and TSH (30 mIU/ml), demonstrating increased constitutive signaling and altered glycoprotein hormone specificity via the intracellular D567G substitution rather than FSHR overexpression. Despite elevating Sertoli cell FSH sensitivity, overexpression of TgFSHRwt had no detectable effect upon normal testis function and did not stimulate Sertoli and germ cell development in testes of gonadotropin-deficient hypogonadal ( hpg) mice, in contrast to the increased meiotic and postmeiotic germ cell development in TgFSHR*D567G hpg testes. Increased steroidogenic potential of TgFSHR*D567G hpg testes was demonstrated by elevated Cyp11a1 and Star expression, which was not detected in TgFSHRwt hpg testes. Androgen-regulated and Sertoli cell-specific Rhox5 gene expression was increased in TgFSHR*D567G but not TgFSHRwt hpg testes, providing evidence of elevated LH-independent androgen activity due to mutant FSHR*D567G. Hence, transgenic FSHR overexpression in Sertoli cells revealed that the D567G mutation confers autonomous signaling and steroidogenic activity in vivo as well as promiscuous glycoprotein hormone receptor activation, independently of FSHR overexpression alone.


2011 ◽  
Vol 300 (1) ◽  
pp. R121-R139 ◽  
Author(s):  
R.-Marc Pelletier ◽  
Casimir D. Akpovi ◽  
Li Chen ◽  
Robert Day ◽  
María L. Vitale

Spermatogenesis requires connexin 43 (Cx43).This study examines normal gene transcription, translation, and phosphorylation of Cx43 to define its role on germ cell growth and Sertoli cell's differentiation, and identifies abnormalities arising from spontaneous autoimmune orchitis (AIO) in mink, a seasonal breeder and a natural model for autoimmunity. Northern blot analysis detected 2.8- and a 3.7-kb Cx43 mRNA bands in seminiferous tubule-enriched fractions. Cx43 mRNA increased in seminiferous tubule-enriched fractions throughout development and then seasonally with the completion of spermatogenesis. Cx43 protein levels increased transiently during the colonization of the tubules by the early-stage spermatocytes. Cx43 phosphorylated (PCx43) and nonphosphorylated (NPCx43) in Ser368 decreased during the periods of completion of meiosis and Sertoli cell differentiation, while Cx43 mRNA remained elevated throughout. PCx43 labeled chiefly the plasma membrane except by stage VII when vesicles were also labeled in Sertoli cells. Vesicles and lysosomes in Sertoli cells and the Golgi apparatus in the round spermatids were NPCx43 positive. A decrease in Cx43 gene expression was matched by a Cx43 protein increase in the early, not the late, phase of AIO. Total Cx43 and PCx43 decreased with the advance of orchitis. The study makes a novel finding of gap junctions connecting germ cells. The data indicate that Cx43 protein expression and phosphorylation in Ser368 are stage-specific events that may locally influence the acquisition of meiotic competence and the Sertoli cell differentiation in normal testis. AIO modifies Cx43 levels, suggesting changes in Cx43-mediated intercommunication and spermatogenic activity in response to cytokines imbalances in Sertoli cells.


1999 ◽  
Vol 340 (1) ◽  
pp. 309-320 ◽  
Author(s):  
Sikha Bettina MUKHERJEE ◽  
S. ARAVINDA ◽  
B. GOPALAKRISHNAN ◽  
Sushma NAGPAL ◽  
Dinakar M. SALUNKE ◽  
...  

The seminiferous tubular fluid (STF) provides the microenvironment necessary for spermatogenesis in the adluminal compartment of the seminiferous tubule (ST), primarily through secretions of the Sertoli cell. Earlier studies from this laboratory demonstrated the presence of glutathione S-transferase (GST) in STF collected from adult rat testis and in the spent media of ST cultures. This study describes the cellular source, isoform composition and possible function of GSTs in the STF. The major GST isoforms present in STF in vivo share extensive N-terminal similarity with rat GSTM1 (rGSTM1), rGSTM2, rGSTM3 and rGST-Alpha. Molecular masses of rGSTM2, rGSTM3 and rGST-Alpha from liver and testis sources were similar, unlike STF-GSTM1, which was larger by 325 Da than its liver counterpart. Peptide digest analysis profiles on reverse-phase HPLC between liver and STF isoforms were identical, and N-terminal sequences of selected peptides obtained by digestion of the various isoforms were closely similar. The above results confirmed close structural similarity between liver and STF-GST isoforms. Active synthesis and secretion of GSTs by the STs were evident from recovery of radiolabelled GST from the spent media of ST cultures. Analysis of secreted GST isoforms showed that GST-Alpha was not secreted by the STs in vitro, whereas there was an induction of GST-Pi secretion. Detection of immunostainable GST-Mu in Sertoli cells in vitro and during different stages of the seminiferous epithelium in vivo, coupled with the recovery of radiolabelled GST from Sertoli cell-culture media, provided evidence for Sertoli cells as secretors of GST. In addition, STF of ‘Sertoli cell only’ animals showed no change in the profile of GST isoform secretion, thereby confirming Sertoli cells as prime GST secretors. Non-recovery of [35S]methionine-labelled GSTs from germ cell culture supernatants, but their presence in germ cell lysates, confirm the ability of the germ cells to synthesize, but not to release, GSTs. Functionally, STF-GSTM1 appeared to serve as a steroid-binding protein by its ability to bind to testosterone and oestradiol, two important hormones in the ST that are essential for spermatogenesis, with binding constants of < 9.8×10-7 M for testosterone and 9×10-6 M for oestradiol respectively.


2020 ◽  
Vol 9 (1) ◽  
pp. 266 ◽  
Author(s):  
Marsida Hutka ◽  
Lee B. Smith ◽  
Ellen Goossens ◽  
W. Hamish B. Wallace ◽  
Jan-Bernd Stukenborg ◽  
...  

The future fertility of prepubertal boys with cancer may be irreversibly compromised by chemotherapy and/or radiotherapy. Successful spermatogenesis has not been achieved following the xenotransplantation of prepubertal human testis tissue, which is likely due to the failure of somatic cell maturation and function. We used a validated xenograft model to identify the factors required for Leydig and Sertoli cell development and function in immature human testis. Importantly, we compared the maturation status of Sertoli cells in xenografts with that of human testis tissues (n = 9, 1 year-adult). Human fetal testis (n = 6; 14–21 gestational weeks) tissue, which models many aspects of prepubertal testicular development, was transplanted subcutaneously into castrated immunocompromised mice for ~12 months. The mice received exogenous human chorionic gonadotropin (hCG; 20IU, 3×/week). In xenografts exposed continuously to hCG, we demonstrate the maintenance of Leydig cell steroidogenesis, the acquisition of features of Sertoli cell maturation (androgen receptor, lumen development), and the formation of the blood–testis barrier (connexin 43), none of which were present prior to the transplantation or in xenografts in which hCG was withdrawn after 7 months. These studies provide evidence that hCG plays a role in Sertoli cell maturation, which is relevant for future investigations, helping them generate functional gametes from immature testis tissue for clinical application.


1990 ◽  
Vol 2 (3) ◽  
pp. 225 ◽  
Author(s):  
Kretser DM de

The interactions between the Sertoli cells and germ cells are progressively becoming an important part of testicular physiology. This paper explores the cytological basis for these interactions, detailing the cyclic changes in the Sertoli cells in concert with the stages of the seminiferous cycle and the nature of the blood-testis barrier. These cytological changes are correlated with a number of variations in the function of Sertoli cells. The mechanisms by which germ cells and Sertoli cells interact are explored and can be divided into those using cell-to-cell contact and others utilizing paracrine factors.


2006 ◽  
Vol 168 (1) ◽  
pp. 195-204 ◽  
Author(s):  
Zhigang Yu ◽  
Nahid Dadgar ◽  
Megan Albertelli ◽  
Arno Scheller ◽  
Roger L. Albin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document