scholarly journals Exploiting Local Feature Patterns for Unsupervised Domain Adaptation

Author(s):  
Jun Wen ◽  
Risheng Liu ◽  
Nenggan Zheng ◽  
Qian Zheng ◽  
Zhefeng Gong ◽  
...  

Unsupervised domain adaptation methods aim to alleviate performance degradation caused by domain-shift by learning domain-invariant representations. Existing deep domain adaptation methods focus on holistic feature alignment by matching source and target holistic feature distributions, without considering local features and their multi-mode statistics. We show that the learned local feature patterns are more generic and transferable and a further local feature distribution matching enables fine-grained feature alignment. In this paper, we present a method for learning domain-invariant local feature patterns and jointly aligning holistic and local feature statistics. Comparisons to the state-of-the-art unsupervised domain adaptation methods on two popular benchmark datasets demonstrate the superiority of our approach and its effectiveness on alleviating negative transfer.

Author(s):  
Jun Wen ◽  
Nenggan Zheng ◽  
Junsong Yuan ◽  
Zhefeng Gong ◽  
Changyou Chen

Domain adaptation is an important technique to alleviate performance degradation caused by domain shift, e.g., when training and test data come from different domains. Most existing deep adaptation methods focus on reducing domain shift by matching marginal feature distributions through deep transformations on the input features, due to the unavailability of target domain labels. We show that domain shift may still exist via label distribution shift at the classifier, thus deteriorating model performances. To alleviate this issue, we propose an approximate joint distribution matching scheme by exploiting prediction uncertainty. Specifically, we use a Bayesian neural network to quantify prediction uncertainty of a classifier. By imposing distribution matching on both features and labels (via uncertainty), label distribution mismatching in source and target data is effectively alleviated, encouraging the classifier to produce consistent predictions across domains. We also propose a few techniques to improve our method by adaptively reweighting domain adaptation loss to achieve nontrivial distribution matching and stable training. Comparisons with state of the art unsupervised domain adaptation methods on three popular benchmark datasets demonstrate the superiority of our approach, especially on the effectiveness of alleviating negative transfer.


Author(s):  
Yongchun Zhu ◽  
Fuzhen Zhuang ◽  
Deqing Wang

While Unsupervised Domain Adaptation (UDA) algorithms, i.e., there are only labeled data from source domains, have been actively studied in recent years, most algorithms and theoretical results focus on Single-source Unsupervised Domain Adaptation (SUDA). However, in the practical scenario, labeled data can be typically collected from multiple diverse sources, and they might be different not only from the target domain but also from each other. Thus, domain adapters from multiple sources should not be modeled in the same way. Recent deep learning based Multi-source Unsupervised Domain Adaptation (MUDA) algorithms focus on extracting common domain-invariant representations for all domains by aligning distribution of all pairs of source and target domains in a common feature space. However, it is often very hard to extract the same domain-invariant representations for all domains in MUDA. In addition, these methods match distributions without considering domain-specific decision boundaries between classes. To solve these problems, we propose a new framework with two alignment stages for MUDA which not only respectively aligns the distributions of each pair of source and target domains in multiple specific feature spaces, but also aligns the outputs of classifiers by utilizing the domainspecific decision boundaries. Extensive experiments demonstrate that our method can achieve remarkable results on popular benchmark datasets for image classification.


2020 ◽  
Vol 34 (07) ◽  
pp. 10567-10574
Author(s):  
Qingchao Chen ◽  
Yang Liu

Unsupervised domain Adaptation (UDA) aims to learn and transfer generalized features from a labelled source domain to a target domain without any annotations. Existing methods only aligning high-level representation but without exploiting the complex multi-class structure and local spatial structure. This is problematic as 1) the model is prone to negative transfer when the features from different classes are misaligned; 2) missing the local spatial structure poses a major obstacle in performing the fine-grained feature alignment. In this paper, we integrate the valuable information conveyed in classifier prediction and local feature maps into global feature representation and then perform a single mini-max game to make it domain invariant. In this way, the domain-invariant feature not only describes the holistic representation of the original image but also preserves mode-structure and fine-grained spatial structural information. The feature integration is achieved by estimating and maximizing the mutual information (MI) among the global feature, local feature and classifier prediction simultaneously. As the MI is hard to measure directly in high-dimension spaces, we adopt a new objective function that implicitly maximizes the MI via an effective sampling strategy and a discriminator design. Our STructure-Aware Feature Fusion (STAFF) network achieves the state-of-the-art performances in various UDA datasets.


2021 ◽  
pp. 1-7
Author(s):  
Rong Chen ◽  
Chongguang Ren

Domain adaptation aims to solve the problems of lacking labels. Most existing works of domain adaptation mainly focus on aligning the feature distributions between the source and target domain. However, in the field of Natural Language Processing, some of the words in different domains convey different sentiment. Thus not all features of the source domain should be transferred, and it would cause negative transfer when aligning the untransferable features. To address this issue, we propose a Correlation Alignment with Attention mechanism for unsupervised Domain Adaptation (CAADA) model. In the model, an attention mechanism is introduced into the transfer process for domain adaptation, which can capture the positively transferable features in source and target domain. Moreover, the CORrelation ALignment (CORAL) loss is utilized to minimize the domain discrepancy by aligning the second-order statistics of the positively transferable features extracted by the attention mechanism. Extensive experiments on the Amazon review dataset demonstrate the effectiveness of CAADA method.


Author(s):  
Dima Damen ◽  
Hazel Doughty ◽  
Giovanni Maria Farinella ◽  
Antonino Furnari ◽  
Evangelos Kazakos ◽  
...  

AbstractThis paper introduces the pipeline to extend the largest dataset in egocentric vision, EPIC-KITCHENS. The effort culminates in EPIC-KITCHENS-100, a collection of 100 hours, 20M frames, 90K actions in 700 variable-length videos, capturing long-term unscripted activities in 45 environments, using head-mounted cameras. Compared to its previous version (Damen in Scaling egocentric vision: ECCV, 2018), EPIC-KITCHENS-100 has been annotated using a novel pipeline that allows denser (54% more actions per minute) and more complete annotations of fine-grained actions (+128% more action segments). This collection enables new challenges such as action detection and evaluating the “test of time”—i.e. whether models trained on data collected in 2018 can generalise to new footage collected two years later. The dataset is aligned with 6 challenges: action recognition (full and weak supervision), action detection, action anticipation, cross-modal retrieval (from captions), as well as unsupervised domain adaptation for action recognition. For each challenge, we define the task, provide baselines and evaluation metrics.


Author(s):  
Wenya Wang ◽  
Sinno Jialin Pan

In fine-grained opinion mining, aspect and opinion terms extraction has become a fundamental task that provides key information for user-generated texts. Despite its importance, a lack of annotated resources in many domains impede the ability to train a precise model. Very few attempts have applied unsupervised domain adaptation methods to transfer fine-grained knowledge (in the word level) from some labeled source domain(s) to any unlabeled target domain. Existing methods depend on the construction of “pivot” knowledge, e.g., common opinion terms or syntactic relations between aspect and opinion words. In this work, we propose an interactive memory network that consists of local and global memory units. The model could exploit both local and global memory interactions to capture intra-correlations among aspect words or opinion words themselves, as well as the interconnections between aspect and opinion words. The source space and the target space are aligned through these domaininvariant interactions by incorporating an auxiliary task and domain adversarial networks. The proposed model does not require any external resources and demonstrates promising results on 3 benchmark datasets.


2021 ◽  
Author(s):  
Wanxia Deng ◽  
Yawen Cui ◽  
Zhen Liu ◽  
Gangyao Kuang ◽  
Dewen Hu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document