EXPERIMENTAL INVESTIGATION OF HEAT AND FLUID FLOW IN A TWO-PHASE HEAT TRANSPORT DEVICE WITH PARALLEL TUBES

Author(s):  
Thanh-Long Phan ◽  
Akira Murata ◽  
Kaoru Iwamoto ◽  
Hiroshi Saito
Author(s):  
Viral K. Patel ◽  
Jamal Seyed-Yagoobi

Micro-scale two-phase flow heat transport involves specialized devices that are used to remove large amounts of heat from small surface areas. They operate by circulating a working fluid through a heated space which causes phase change from liquid to vapor. During this process, a significant amount of heat is transported away from the heat source. Micro-scale heat transport devices are compact in size and the heat transfer coefficient can be orders of magnitude higher than in macro-scale for similar operating conditions. Thus, it is of interest to develop such devices for cooling of next-generation electronics and other applications with extremely large heat fluxes. The heat transport device presented in this paper is driven by electrohydrodynamic (EHD) conduction pumping. In EHD conduction pumping, when an electric field is applied to a dielectric liquid, flow is induced. The pump is installed in a two-phase flow loop and has a circular 1 mm diameter cross section with electrode spacing on the order of 120 μm. It acts to circulate the fluid in the loop and has a simple yet robust, non-mechanical design. Results from two-phase flow experiments show that it is easily controlled and such electrically driven pumps can effectively be used in heat transport systems.


2015 ◽  
Vol 137 (4) ◽  
Author(s):  
Viral K. Patel ◽  
Jamal Seyed-Yagoobi

Meso and microscale two-phase flow heat transport involves devices that are used to remove heat from small surface areas by circulating a working fluid through the heated space and causing phase change from liquid to vapor. There is an impetus to develop such devices for applications that require compact thermal management systems. The active, mesoscale two-phase flow heat transport device presented in this paper is driven solely by electrohydrodynamic (EHD) conduction pumping, and its heat transport characteristics are provided. An important understanding of the EHD conduction pump performance under a two-phase system versus single-phase system is also elucidated from these results. In addition, the ability to generate reliable low mass fluxes by this method has also allowed for determining local in-tube flow boiling heat transfer coefficient as a function of vapor quality in a mesoscale circular tube evaporator, providing limited but valuable information currently unavailable in the literature.


2007 ◽  
Vol 2007 (0) ◽  
pp. 383-384
Author(s):  
Adina Cirtog ◽  
Sadanari Mochizuki ◽  
Akira Murata

2007 ◽  
Vol 2007 (0) ◽  
pp. 385-386
Author(s):  
Daisuke Inoue ◽  
Tetuo Onishi ◽  
Sadanari Mochizuki ◽  
Akira Murata

Author(s):  
Matthew R. Pearson ◽  
Jamal Seyed-Yagoobi

Heat pipes are well-known as simple and effective heat transport devices, utilizing two-phase flow and the capillary phenomenon to remove heat. However, the generation of capillary pressure requires a wicking structure and the overall heat transport capacity of the heat pipe is generally limited by the amount of capillary pressure generation that the wicking structure can achieve. Therefore, to increase the heat transport capacity, the capillary phenomenon must be either augmented or replaced by some other pumping technique. Electro-hydrodynamic (EHD) conduction pumping has been demonstrated as an effective method for pumping liquid films by using DC electric fields and a dielectric working fluid. Beyond increased pumping capacity, EHD conduction pumping offers other advantages over capillary pumping, such as active control of the pumping capacity via the intensity of the applied electric field. This experimental study demonstrates the prospects of a macro-scale two-phase heat transport device that is driven by EHD conduction pumping. Various liquid film thicknesses are considered. In each case, the performance of the EHD-driven heat transport device at various electric field intensities is compared to the capabilities of the same device under gravity alone. The effect of tilt on the device is also considered.


2016 ◽  
Vol 16 (1) ◽  
pp. 33-40 ◽  
Author(s):  
J. Luo ◽  
X. Liu ◽  
X. Wang

Abstract Cu–4.7 wt. % Sn alloy wire with Ø10 mm was prepared by two-phase zone continuous casting technology, and the temperature field, heat and fluid flow were investigated by the numerical simulated method. As the melting temperature, mold temperature, continuous casting speed and cooling water temperature is 1200 °C, 1040 °C, 20 mm/min and 18 °C, respectively, the alloy temperature in the mold is in the range of 720 °C–1081 °C, and the solid/liquid interface is in the mold. In the center of the mold, the heat flow direction is vertically downward. At the upper wall of the mold, the heat flow direction is obliquely downward and deflects toward the mold, and at the lower wall of the mold, the heat flow deflects toward the alloy. There is a complex circular flow in the mold. Liquid alloy flows downward along the wall of the mold and flows upward in the center.


Sign in / Sign up

Export Citation Format

Share Document