scholarly journals The response of chamomile (Matricaria chamomilla L.) plants to soil zinc supply

2011 ◽  
Vol 52 (No. 1) ◽  
pp. 1-7 ◽  
Author(s):  
A. Grejtovský ◽  
K. Markušová ◽  
A. Eliašová ◽  
P.J. Šafárik

A pot experiment was conducted to investigate the influence of varying supplies of Zn (50–150–300 mg/kg soil – Orthic Luvisol) on the uptake of Zn by plants, selected productive parameters and production of secondary metabolites in Matricaria chamomilla L., diploid cv. Novbona. Chamomile takes up Zn easily and accumulates it in all its organs. The maximum supply of Zn resulted in an 18-fold increase in chamomile shoots where it reached the level of 271.0 mg/kg dry matter. Such a treatment resulted in a 5-fold increase of Zn in chamomile anthodia (Matricariae flos drug) reaching a level of 159.8 mg/kg dry matter. During cultivation, experimental plants showed no signs indicating an excess of Zn. Of the selected productive parameters, the increasing concentration of Zn in the soil affected significantly only the plant height. A weak, positive, insignificant effect of Zn was observed in the production of the plant biomass. When supplying Zn at a rate of 50 mg/kg soil the biomass of the shoots dry matter increased by 17% and anthodia by 8%, respectively (P > 0.05). However, an additional increase in Zn supply reduced production of anthodia, while the dose of 300 mg Zn/kg soil resulted in a significant, 17% decrease of anthodia yield in comparison with the maximum production achieved with the treatment by 50 mg Zn/kgsoil. The application of Zn into the soil affected only slightly the content of essential oil and proportion of chamazulene, (E)-β-farnesene, and ene-yne-dicycloethers. An increased supply of Zn did not affect the concentration of flavone apigenin and coumarin herniarin in chamomile anthodia. Zn fertilization decreased the accumulation of Cd in chamomile plants; supply of 50 mg Zn/kg soil and caused an decrease in Cd concentration by 10% in shoots (P > 0.05) and by 37% (from 0.280 to 0.176 mg Cd/kg dry matter) in anthodia (P < 0.01), respectively. An additional increase in soil Zn decreased significantly with an accumulation of Cd by 18% (at a dose of 300 mg Zn/kg soil) only in chamomile shoots.

2020 ◽  
Vol 13 (10) ◽  
pp. 33
Author(s):  
M. P. S. O. Freitas ◽  
V. M. M. Lima ◽  
J. N. Castro ◽  
J. S. Trindade ◽  
V. L. Silva

Due to the advancement of soybean production, alternatives are sought to improve the ability to biologically fix nitrogen, however, the effectiveness of this procedure may be impaired by the lack of micronutrients, such as molybdenum. The objective of this study was to evaluate the productive and developmental aspects and the nodulation of soybean, submitted to different inoculation doses and varied application techniques of Molybdenum. The experiment was conducted with the application of Mo in 4 ways, seed treatment, leaf pathway, added seed pathway treatment and sowing furrow. Height and stem diameter, nodulation, dry matter and plant biomass were analyzed. Significant data were observed for plant height and biomass, where the best application was in the treatment of seeds added from the leaf pathway. The presence of inoculant provided characteristics very close to the treatment where no inoculant was used.


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 523c-523
Author(s):  
Siegfried Zerche

Refined nutrient delivery systems are important for environmentally friendly production of cut flowers in both soil and hydroponic culture. They have to be closely orientated at the actual nutrient demand. To solve current problems, express analysis and nutrient uptake models have been developed in horticulture. However, the necessity of relatively laborious analysis or estimation of model input parameters have prevented their commercial use up to now. For this reason, we studied relationships between easily determinable parameters of plant biomass structure as shoot height, plant density and dry matter production as well as amount of nitrogen removal of hydroponically grown year-round cut chrysanthemums. In four experiments (planting dates 5.11.91; 25.3.92; 4.1.93; 1.7.93) with cultivar `Puma white' and a fixed plant density of 64 m2, shoots were harvested every 14 days from planting until flowering, with dry matter, internal N concentration and shoot height being measured. For each planting date, N uptake (y) was closely (r2 = 0.94; 0.93; 0.84; 0.93, respectively) related to shoot height (x) at the time of cutting and could be characterized by the equation y = a * × b. In the soilless cultivation system, dry matter concentrations of N remained constant over the whole growing period, indicating non-limiting nitrogen supply. In agreement with constant internal N concentrations, N uptake was linearly related (r2 = 0.94 to 0.99) to dry matter accumulation. It is concluded that shoot height is a useful parameter to include in a simple model of N uptake. However, in consideration of fluctuating greenhouse climate conditions needs more sophisticated approaches including processes such as water uptake and photosynthetically active radiation.


Agronomy ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 451
Author(s):  
Moritz von Cossel ◽  
Lorena Agra Pereira ◽  
Iris Lewandowski

The global demand for plant biomass to provide bioenergy and heat is continuously increasing because of a growing interest among many industrialized and developing countries towards climate sound and renewable energy supply. The exacerbation of land-use conflicts proliferates social-ecological demands on future bioenergy cropping systems. Perennial herbaceous wild plant mixtures (WPMs) represent an approach to providing social-ecologically more sustainably produced biogas substrate that has gained increasing public and political interest only in recent years. The focus of this study lies on three perennial wild plant species (WPS) that usually dominate the biomass yield performance of WPM cultivation. These WPS were compared with established biogas crops in terms of their substrate-specific methane yield (SMY) and lignocellulosic composition. The plant samples were investigated in a small-scale mesophilic discontinuous biogas batch test for determining the SMY. All WPS were found to have significantly lower SMY (241.5–248.5 lN kgVS−1) than maize (337.5 lN kgVS−1). This was attributed to higher contents of lignin (9.7–12.8% of dry matter) as well as lower contents of hemicellulose (9.9–11.5% of dry matter) in the WPS. Only minor, non-significant differences to cup plant and Virginia mallow were observed. Thus, when planning WPS as a diversification measure in biogas cropping systems, their lower SMY should be considered.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Fatemeh Ahmadi ◽  
Abbas Samadi ◽  
Ebrahim Sepehr ◽  
Amir Rahimi ◽  
Sergey Shabala

AbstractMedicinal plants represent a valuable commodity due to beneficial effects of their natural products on human health, prompting a need for finding a way to optimize/increase their production. In this study, a novel growing media with various perlite particle size and its mixture with peat moss was tested for hydroponic-based production of Echinacea purpurea medicinal plant under greenhouse conditions. The plant growth parameters such as plant height, total fresh leave weight, fresh root weight, total biomass, total chlorophyll, leaf area, and essential oil compositions were assessed. Perlite particle size in the growing media was varied from very coarse (more than 2 mm) to very fine (less than 0.5 mm), and the ratio between perlite and peat moss varied from 50:50 v/v to 30:70 v/v. In addition, two nitrate (NO3−) to ammonium (NH4+) ratios (90:10 and 70:30) were tested for each growing media. The medium containing very fine-grade perlite and 50:50 v/v perlite to peat moss ratio was found to be most optimal and beneficial for E. purpurea performance, resulting in maximal plant height, fresh and dry weight, leaf surface area, and chlorophyll content. It was also found that an increase in NO3−/NH4+ ratio caused a significant increase in plant growth parameters and increase the plant essential oil content. The major terpene hydrocarbons found in extract of E. purpurea with the best growth parameters were germacrene D (51%), myrcene (15%), α-pinene (12%), β-caryophyllene (11%), and 1-Pentadecene (4.4%), respectively. The percentages of these terpene hydrocarbons were increased by increasing of NO3−/NH4+ ratio. It can be concluded that decreasing the perlite particle size and increasing the NO3−/NH4+ ratio increased the plant growth parameters and essential oil compositions in E. purpurea.


2018 ◽  
Vol 39 (1) ◽  
pp. 261
Author(s):  
Julio Cezar Heker Junior ◽  
Mikael Neumann ◽  
Robson Kyoshi Ueno ◽  
Margarete Kimie Falbo ◽  
Sandra Galbeiro ◽  
...  

The objective of this study was to evaluate the associative effect of monensin sodium to virginiamycin and/or essential oils on performance, consumption of nutrients and dry matter, apparent digestibility, feeding behavior and carcass characteristics of feedlot finished steers. The experiment lasted 106 days with 10 days of adaptation and 96-day trial, and had 32 crosses angus steers, average age 12 months and average weight of 376 kg, divided into 16 stalls, the weighing took place every 21 days and at the end of the experiment. The treatments consisted of the combination of the following additives to the diet included: Monensin sodium, 200 mg day-1 (MO); Monensin sodium, a dose of 200 mg day-1 + essential oil dose of 1.5g day-1 (MO+EO); Monensin sodium, a dose of 200 mg day-1 + virginiamycin, 200 mg day-1 (MO+VI); Monensin sodium, 200 mg day-1 + essential oil dose of 1.5g day-1 + virginiamycin day, 200 mg day-1 (MO+EO+VI), each treatment had four repetitions, where each repetitions consisted of a bay with two animals. The MO+VI association in relation to MO only increase in average daily gain (ADG) of 24.44%, 22.35%, 21.10% and 17.31% in weighing 42, 63, 84 and 96 days, similar the combination of MO+EO+VI which provided an improvement of 21.94%, 13.59%, 15.45% and 14.75% respectively in the same weightings. The daily carcass gain and carcass overall gain were higher in associations MO+VI and MO+EO+VI and provided an average gain of 16.67 kg more compared to MO and MO+EO. In the parameters feed efficiency, dry matter intake and nutrient expressed in kg day-1 and percentage of live weight were not observed differences (P > 0.05) between treatments. Data on apparent digestibility, feeding behavior and carcass characteristics did not show statistical difference between treatment, except for fat thickness which was higher when associated with any of the additives to the MO, and farm weight was higher in associations containing VI. Associating MO+VI or MO+EO+VI proved to be best in this work compared to MO+EO or only MO in the diets of steers in termination.


2017 ◽  
Vol 38 (4Supl1) ◽  
pp. 2387
Author(s):  
Santiel Alves Vieira Neto ◽  
Fábio Ribeiro Pires ◽  
João Carlos Madalão ◽  
Douglas Gomes Viana ◽  
Carlos César Evangelista de Menezes ◽  
...  

Given the high costs of agricultural production, especially due to the price of fertilisers, particularly nitrogen, the use of inoculants to supply nitrogen to soybean crops is a widely recommended practice. The objective of this study was to evaluate the feasibility of applying inoculants through seed and planting furrow in soil previously cultivated with soybean and Brazilian native “cerrado” biome soil under greenhouse conditions. Seven treatments were tested: 1) inoculation via seed (inoculant + fungicide + micronutrient), 2) treatment via seed (fungicide + micronutrient), 3) control (only seed), 4) inoculation via furrow-dose 1 (recommended dose), 5) inoculation via furrow-dose 2 (twice the recommended dose), 6) inoculation via furrow-dose 3 (three times the recommended dose) and 7) inoculation via furrow-dose 1 + seed inoculation. We evaluated plant height, fresh and dry matter weight of the aerial part and nodules, number of total, viable and non-viable nodules, number of pods per plant and grain yield. Inoculation was more effective when used in cerrado soil, but soybean performance in treatments without inoculation was higher in previously cultivated soil. Application through furrow proved to be a viable practice due to the similarity of the results obtained with the traditional application by seed.


Rhizosphere ◽  
2020 ◽  
Vol 15 ◽  
pp. 100208 ◽  
Author(s):  
Durinézio José de Almeida ◽  
Odair Alberton ◽  
Joice Karina Otênio ◽  
Rosilaine Carrenho

2019 ◽  
Vol 17 (1) ◽  
pp. 33-38
Author(s):  
Swapan Kumar Paul ◽  
Mosa Morsheda Khatun ◽  
Md Abdur Rahman Sarkar

Sulphur is a component of plant amino acids, proteins, vitamins, and enzyme structures which influence the productivity of oil seed and total oil content. The experiment was conducted to find out the effect of sulphur on the seed yield and oil content of sesame in Bangladesh. The experiment comprised three varieties of sesame viz. Binatil-2, Binatil-3 and BARI Til-4 and six levels of sulphur (S) viz. 0, 10, 20, 30, 40 and 50 kg S ha–1. The experiment was laid out in a randomized complete block design with three replications. Dry matter production, crop characters, yield components, seed yield and oil content were significantly influenced by variety, level of sulphur and their interaction. The highest dry matter production plant–1 at 50 DAS (17.56 g), plant height (101.3 cm), number of branches plant–1 (3.66),  number of pods plant-1 (41.56), number of seeds pod-1 (58.83),  seed yield    (747.2 kg ha-1), stover yield (2243.0 kg ha–1) and oil content (40.03%) were obtained in BARI Til-4 while the corresponding lowest values of all parameters were recorded in Binatil-2. In case of sulphur application, the highest dry matter production plant–1 at 50 DAS (20.81 g), plant height (109.7 cm), number of branches plant–1 (3.87),  number of pods plant–1 (46.13),  number of seeds pod-1 (56.67),  seed yield (800.0 kg ha–1), stover yield (2787 kg ha–1 ) and oil content (43.97%) were obtained when crop was fertilized with 30 kg S ha–1 while the lowest seed yield (502.2 kg ha–1), stover yield (1550.0 kg ha–1) and oil content (32.80%) were obtained in control (0 kg S ha–1). BARI Til-4 fertilized with 30 kg S ha–1 produced the highest dry matter plant–1 at 50 DAS (24.80 g), number of pods plant–1 (51.13), seeds pod–1 (62.0) and seed yield (1011.0 kg ha–1). The highest oil content (43.97%) was also recorded in BARI Til-4 fertilized with 30 kg S ha–1, which was as good as that of BARI Til-4 fertilized with 40 kg S ha–1. Therefore, BARI Til-4 fertilized with 30 kg S ha–1 can be considered as a promising practice in respect of seed yield and oil content of sesame in Bangladesh. J. Bangladesh Agril. Univ. 17(1): 33–38, March 2019


2016 ◽  
Vol 67 (12) ◽  
pp. 1215 ◽  
Author(s):  
Gero Barmeier ◽  
Bodo Mistele ◽  
Urs Schmidhalter

Assessment of plant height is an important factor for agronomic and breeder decisions; however, current field phenotyping, such as visual scoring or using a ruler, is time consuming, labour intensive, costly and subjective. For agronomists and plant breeders, the most common method used to measure plant height is still a meter stick. In a 3-year study, we have adopted a herbometre similar to a rising plate meter as a reference method to obtain the weighted plant height of barley cultivars and to evaluate vehicle-based ultrasonic and laser distance sensors. Sets of 30 spring barley cultivars and 14 and 60 winter barley cultivars were tested in 2013, 2014 and 2015, respectively. The herbometre was well suited as a reference method allowing for an increased area and was easy to handle. The herbometre measurements within a plot showed very low coefficients of variation. Good and close relationships (R2 = 0.59, 0.76, 0.80) between the herbometre and the ultrasonic distance sensor measurements were observed in the years 2013, 2014 and 2015, respectively, demonstrating also increased values of heritability. Hence, both sensors were able to differentiate among barley cultivars in standard breeding trials. For the sensors, we observed a 4-fold faster operating time and 6-fold increase of measurement points compared with the herbometre measurement. Based on these results, we conclude that distance sensors represent a powerful and economical high-throughput phenotyping tool for breeders and plant scientists to estimate plant height and to differentiate cultivars for agronomic decisions and breeding activities potentially being also applicable in other small grain cereals with dense crop stands. Particularly, ultrasonic distance sensors may reflect an agronomically and physiologically relevant plant height information.


Sign in / Sign up

Export Citation Format

Share Document