scholarly journals Simulation of Traction Electric Drive with Vector Systems of Direct Torque Control

Author(s):  
Ilya Fedotov ◽  
Vyacheslav Tikhonov

The article deals with investigation of electromechanical and energetic characteristics of traction electric drive with vector systems of direct torque control. As a controlled object the traction asynchronous motor ДТА-1У1, which is used to drive the trolley-bus is considered. At the present time the usage of traction asynchronous electric drives for town transport is relevant. Due to development of power electronic devices and microprocessor-based control systems it became possible to replace DC electric drives with electric drives with asynchronous motors. The article contains brief description of two different types of control systems: field-oriented control (FOC) and direct torque control (DTC). Principles of work for both systems are considered and the main advantages and disadvantages associated with the use of these systems are pointed out. The models of both systems for traction asynchronous electric drive, built in modeling environment MATLAB/Simulink, are given in this article for further comparative analysis. As the main quality factor of control total harmonic distortion (THD) is used.

Author(s):  
Yuri M. Inkov ◽  
Andrey S. Kosmodaminskiy ◽  
Alexander A. Pugachev ◽  
Elena V. Sachkova

The main requirements for traction electric drives are listed and discussed. The direct torque control of an induction motor electric drive is established by a survey of operation modes of traction electric drives to thoroughly satisfy the requirements for traction electric drive. The topologies and operation principles of two-and three-level voltage source inverters are presented. The advantages and shortcomings of three-level voltage source inverters to be applied on locomotive traction drives are highlighted in relation to the two-level ones. The recommendations of choice between different voltage source inverter topologies are given. The topology and principles of operation of direct torque control of induction motors with two- and three-level voltage source inverters are described. The simulation peculiarities of electric drives with direct torque control and two- and three-level inverters in Matlab are considered. The simulation results are presented. The techniques to reduce the torque oscillations are shown and implemented in Matlab Simulink.


Author(s):  
Hamdy Mohamed Soliman

With development of power electronics and control Theories, the AC motor control becomes easier. So the AC motors are used instead of the DC motor in the drive applications. With this development, a several methods of control are invented. The field oriented control and direct torque control are from the best methods to control the drive systems. This paper is compared between the field oriented control and direct torque control to show the advantages and disadvantages of these methods of controls. This study discussed the effects of these methods of control on the total harmonic distortion of the current and torque ripples. This occurs through study the performance characteristics of the AC motor. The motor used in this study is an induction motor. This study is simulated through the MATLAB program.


2021 ◽  
pp. 195-200
Author(s):  
С.П. Черный ◽  
 А.В. Бузикаева ◽  
А.К. Тимофеев

Данная работа посвящена моделированию интеллектуальной системы управления электроприводом якорной лебедки с применением теории нечетких множеств. Был приведен анализ существующих систем управления электроприводами якорно-швартовных узлов основанных на различных традиционных схемах регулирования, показаны достоинства и недостатки традиционных систем управления, а также выявлены основные возмущения, носящие существенно-недетерминированный характер. Процедуры интеллектуального управления в реализуемой модели системы управления электроприводом реализуются нечетким регулятором. Интеллектуальная система управления в своей основе имеет нечеткий регулятор с алгоритмом вывода Сугено, формализация входных сигналов по ошибке осуществляется двумя лингвистическими переменными. Кроме того, показано преимущество предлагаемого подхода при построении систем управления электроприводами якорно-швартовных узлов на основании базовых показателей качества. This paper is devoted to the modeling of an intelligent control system for the electric drive of an anchor winch using the theory of fuzzy sets. The analysis of the existing control systems for electric drives of anchor and mooring units based on various traditional control schemes was given, the advantages and disadvantages of traditional control systems were shown, and the main disturbances of a significantly non-deterministic nature were identified. Intelligent control procedures in the implemented model of the electric drive control system are implemented by a fuzzy controller. The intelligent control system is based on a fuzzy controller with the Sugeno output algorithm, the formalization of input signals by error is carried out by two linguistic variables. In addition, the advantage of the proposed approach in the construction of control systems for electric drives of anchor and mooring units on the basis of basic quality indicators is shown.


2019 ◽  
Vol 292 ◽  
pp. 01066
Author(s):  
Sorin Ioan Deaconu ◽  
Marcel Topor ◽  
Gabriel Nicolae Popa ◽  
Feifei Bu

Electric transportation has made rapid developments and significant steps toward the full electrical powertrain systems. With the increased use of electric vehicles energy conversion systems several technologies have been developed and reached a high degree of performance. Since electric vehicles and hybrid are the more cost competitive technology available today, the evolution toward a more reliable powertrain combining different electric powertrain systems is needed. Induction machine and permanent magnet generators/motors integrated powertrains have some significant advantages over other types of systems such as no need of excitation, low volume and weight, high precision, and no use of a complex gearbox for torque/speed conversion. A electric vehicle powertrain for EV propulsion with a induction motor and a matrix converter is proposed in this paper. The induction motor is controlled using the direct torque flux algorithm. The traditional power conversion stages consist of a rectifier followed by an inverter and bulky DC link capacitor. It involves 2 stages of power conversion and, subsequently, the efficiency of the overall EV is reduced because of power quality issues mainly based on total harmonic distortion. The proposed solution incorporates a matrix converter is mainly utilized to control the induction electric motor for propulsion. The matrix converter is a simple and compact direct AC-AC converter. The proposed EV with matrix converter is modeled using PSIM.


Author(s):  
Sadegh Vaez-Zadeh

In this chapter, three control methods recently developed for or applied to electric motors in general and to permanent magnet synchronous (PMS) motors, in particular, are presented. The methods include model predictive control (MPC), deadbeat control (DBC), and combined vector and direct torque control (CC). The fundamental principles of the methods are explained, the machine models appropriate to the methods are derived, and the control systems are explained. The PMS motor performances under the control systems are also investigated. It is elaborated that MPC is capable of controlling the motor under an optimal performance according to a defined objective function. DBC, on the other hand, provides a very fast response in a single operating cycle. Finally, combined control produces motor dynamics faster than one under VC, with a smoother performance than the one under DTC.


2020 ◽  
Vol 178 ◽  
pp. 01001 ◽  
Author(s):  
Viktor Meshcheryakov ◽  
Tatyana Sinyukova ◽  
Alexey Sinyukov ◽  
Andrei Boikov ◽  
Rustem Mukhametzhanov

The study aims at the analysis of vector control asynchronous electric drive systems. For comparison and evaluation, mathematical models of systems are implemented in the environment of simulation modeling Matlab Simulink. The evaluation criteria selected were: complexity of implementation, energy efficiency of the inverter, accuracy of speed maintenance, torque ripple, reaction speed of the system to disturbances from the side of the drive mechanism, impact on the supply network. Vector control systems by ensuring the maintenance of accuracy of the moment in the entire range of speed control are more widespread. The study of vector systems, the formation of the stator voltage vector in which is carried out using pulse-width modulation. The signal organization during the study was carried out by several methods. At the initial stage, the signal was formed due to relay-vector control in a closed loop for monitoring the instantaneous values of current errors without forced modulation; at the next stage of the study, the signal was generated using sinusoidal pulse-width modulation based on a comparison of control signals with some reference vector, the final stage became a spatial-vector modulation method.


2013 ◽  
Vol 676 ◽  
pp. 209-212
Author(s):  
Lu Huan Shi ◽  
Yao Hui Li

In the electricity draws control system, the change of Low-velocity area of Rs will bring about a series of problem, especially the stator current and flux, will cause the distortion of the speed pulse vibration. The test discussed control scheme and optimization designs of asynchronous draw motors from exchange transmission electric locomotive operation characteristic demand. It adopts control strategy of neural network direct torque control (DTC) to control electricity draw the locomotive, to analyze the reacting of starting and sudden change of load, verifying this method may effectively improve the dynamic performance of the asynchronous motor, got up the very good inhibitory action to the low speed area torque pulsation. Thus the simulation results have proven the neural network DTC control strategy feasibility.


2014 ◽  
Vol 698 ◽  
pp. 131-135 ◽  
Author(s):  
V. Timoshkin ◽  
A. Glazyrin ◽  
L. Kozlova

This article describes the main advantages and disadvantages of electric drive TVR-IM compared with a frequency converter. The necessity to use electric drives TVR-IM and angular velocity observers to solve technological problems is substantiated. Promising directions in the field of constructing closed-loop by the speed observer systems TVR-IM are shown.


Sign in / Sign up

Export Citation Format

Share Document