scholarly journals TWO-COMPONENT FLUID FRONT TRACKING IN FAULT ZONE AND DISCONTINUITY WITH PERMEABILITY HETEROGENEITY

2021 ◽  
Vol 36 (3) ◽  
pp. 19-30
Author(s):  
Yousef Shiri ◽  
Hossein Hassani

Fluid front tracking is important in two-phase/component fluid flow in porous media with different heterogeneities, especially in the improved recovery of oil. Three different flow patterns of stable, viscous fingering, and capillary fingering exist based on the fluids’ viscosity and capillary number (CA). In addition, fluid front and sweep efficiency are affected by the heterogeneity of the porous medium. In the current study, the heterogeneous porous media are: (1) normal fault zone or cross-bedding with heterogeneity in permeability, and (2) a fracture or discontinuity between two porous media consisting of two homogeneous layers with very low and high permeabilities, in which immiscible water flooding is performed for sweep efficiency and streamlines tracking purposes. By considering the experimental glass micromodel and the simulation results of discontinuity, a crack is the main fluid flow path. After the breakthrough, fluid inclines to penetrate the fine and coarse grains around the crack. Moreover, an increase in flow rate from 1 and 200 (ml/h) in both the experimental and simulation models causes a reduction in the sweep efficiency from 14% to 7.3% and 15.6% to 10% by the moment of breakthrough, respectively. In the fault zone, the sweep efficiency and the streamline of the injected fluid showed a dependency on the interface incident angle, and the layers’ permeability. The presented glass micromodel and Lattice Boltzmann Method were consistent with fluid dynamics, and both of them were suitable for a precise evaluation of sweep efficiency and visualization of preferential pathway of fluid flow through cross-bedding and discontinuity for enhanced oil recovery purposes.

2010 ◽  
Vol 13 (11) ◽  
pp. 1033-1037
Author(s):  
Muhammad R. Mohyuddin ◽  
S. Islam ◽  
A. Hussain ◽  
A. M. Siddiqui

2019 ◽  
Vol 55 (11) ◽  
pp. 9592-9603
Author(s):  
Chul Moon ◽  
Scott A. Mitchell ◽  
Jason E. Heath ◽  
Matthew Andrew

SPE Journal ◽  
2021 ◽  
pp. 1-21
Author(s):  
Yanqing Wang ◽  
Xiang Li ◽  
Jun Lu

Summary Seawater breakthrough percentage monitoring is critical for offshore oil reservoirs because seawater fraction is an important parameter for estimating the severity of many flow assurance issues caused by seawater injection and further developing effective strategies to mitigate the impact of those issues on production. The validation of using natural ions as a tracer to calculate the seawater fraction was investigated systematically by studying the natural chemical composition evolution in porous media using coreflood tests and static bottle tests. The applicable range of ions was discussed based on the interaction between ion and rock. The barium sulfate reactive model was improved by integrating interaction between ions and rock as well as fluid flow effect. The results indicate that chloride and sodium interact with rock, but the influence of the interaction can be minimized to a negligible level because of the high concentrations of chloride and sodium. Thus, chloride and sodium can be used as conservative tracers during the seawater flooding process. However, adsorption/desorption may have a large influence on chloride and sodium concentrations under the scenario that both injection water and formation water have low chloride and sodium content. Bromide shows negligible interaction with rock even at low concentrations and can be regarded as being conservative. The application of a barium and sulfate reaction model in coreflood tests does not work as well as in bottle tests because fluid flow in porous media and ion interaction with rock is not taken into account. Although sulfate and barium adsorption on clay is small, it should not be neglected. The barium sulfate reaction model was improved based on the simulation of ion transport in porous media. Cations (magnesium, calcium, and potassium) are involved in the complicated cation-exchange process, which causes large deviation. Therefore, magnesium, calcium, and potassium are not recommended to calculate seawater fraction. Boron, which exists as anions in formation water and is used as a conservative tracer, has significant interactions with core matrix, and using boron in an ion tracking method directly can significantly underestimate the seawater fraction. The results give guidelines on selecting suitable ions as tracers to determine seawater breakthrough percentages under different production scenarios.


Sign in / Sign up

Export Citation Format

Share Document