Experimental Study of Natural Ions and Rock Interactions for Seawater Breakthrough Percentage Monitoring during Offshore Seawater Flooding
Summary Seawater breakthrough percentage monitoring is critical for offshore oil reservoirs because seawater fraction is an important parameter for estimating the severity of many flow assurance issues caused by seawater injection and further developing effective strategies to mitigate the impact of those issues on production. The validation of using natural ions as a tracer to calculate the seawater fraction was investigated systematically by studying the natural chemical composition evolution in porous media using coreflood tests and static bottle tests. The applicable range of ions was discussed based on the interaction between ion and rock. The barium sulfate reactive model was improved by integrating interaction between ions and rock as well as fluid flow effect. The results indicate that chloride and sodium interact with rock, but the influence of the interaction can be minimized to a negligible level because of the high concentrations of chloride and sodium. Thus, chloride and sodium can be used as conservative tracers during the seawater flooding process. However, adsorption/desorption may have a large influence on chloride and sodium concentrations under the scenario that both injection water and formation water have low chloride and sodium content. Bromide shows negligible interaction with rock even at low concentrations and can be regarded as being conservative. The application of a barium and sulfate reaction model in coreflood tests does not work as well as in bottle tests because fluid flow in porous media and ion interaction with rock is not taken into account. Although sulfate and barium adsorption on clay is small, it should not be neglected. The barium sulfate reaction model was improved based on the simulation of ion transport in porous media. Cations (magnesium, calcium, and potassium) are involved in the complicated cation-exchange process, which causes large deviation. Therefore, magnesium, calcium, and potassium are not recommended to calculate seawater fraction. Boron, which exists as anions in formation water and is used as a conservative tracer, has significant interactions with core matrix, and using boron in an ion tracking method directly can significantly underestimate the seawater fraction. The results give guidelines on selecting suitable ions as tracers to determine seawater breakthrough percentages under different production scenarios.