This chapter presents a model developed by the author, in publications dated from 2002 to 2016, on flow in porous media assuming diffuse interfaces. It contains five sections. Section 1 is an Introduction, tracing the origin of the diffuse interface formalism. Section 1 also presents the traditional compositional model, pointing out its emphasis on phases and questioning the concept of relative permeabilities. Section 2 presents the mass, momentum, and energy balance equations, for a multicomponent continuous fluid, in their most general form, at the pore level. The existence of constitutive equations with phase-inducing terms is mentioned, but the equations are not introduced at this level, and phases are not an explicit concern. Section 3 is about the averaging of the pore level equations inside a region containing many pores. There is no explicit mention of phases and therefore not of relative permeabilities. Section 4 is the technical basis from which the constitutive equations of the model arise, and it is shown that many models can exist. Section 5 introduces constitutive equations and presents a minimal model for multicomponent, multiphase, and thermal flow in neutrally wetting porous media, i.e., a model with a minimal amount of phenomenological parameters.