Induced Seismicity in the Delaware Basin, West Texas, is Caused by Hydraulic Fracturing and Wastewater Disposal

2020 ◽  
Vol 110 (5) ◽  
pp. 2225-2241 ◽  
Author(s):  
Alexandros Savvaidis ◽  
Anthony Lomax ◽  
Caroline Breton

ABSTRACT Most current seismicity in the southern U.S. midcontinent is related to oil and gas operations (O&G Ops). In Texas, although recorded earthquakes are of low-to-moderate magnitude, the rate of seismicity has been increasing since 2009. Because of the newly developed Texas Seismological Network, in most parts of Texas, recent seismicity is reported on a daily basis with a magnitude of completeness of ML 1.5. Also, funded research has allowed the collection of O&G Op information that can be associated with seismicity. Although in the Dallas–Fort Worth area, recent seismicity has been associated mostly with saltwater disposal (SWD), in the South Delaware Basin, West Texas, both hydraulic fracturing (HF) and SWD have been found to be causal factors. We have begun to establish an O&G Op database using four different sources—IHS, FracFocus, B3, and the Railroad Commission of Texas—with which we can associate recent seismicity to HF and SWD. Our approach is based on time and epicentral location of seismic events and time, location of HF, and SWD. Most seismicity occurs in areas of dense HF and SWD-well activity overlapping in time, making association of seismicity with a specific well type impossible. However, through examination of clustered seismicity in space and time, along with isolated clusters of spatiotemporal association between seismicity and O&G Ops, we are able to show that a causation between HF and seismicity may be favored over causation with SWD wells in areas of spatially isolated earthquake clusters (Toyah South, Reeves West, Jeff Davis Northeast, and Jeff Davis East). Causality between SWD and seismicity may be inferred for isolated cases in Reeves South and Grisham West.

2014 ◽  
Vol 48 (21) ◽  
pp. 12552-12560 ◽  
Author(s):  
N. R. Warner ◽  
T. H. Darrah ◽  
R. B. Jackson ◽  
R. Millot ◽  
W. Kloppmann ◽  
...  

Water ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 796 ◽  
Author(s):  
Jose Rodriguez ◽  
Joonghyeok Heo ◽  
Kee Han Kim

The purpose of this study is to evaluate the impact of hydraulic fracturing on groundwater quality in Ector, Midland, and Martin Counties located in the Permian Basin, West Texas. Chemical fluids used in hydraulic fracturing and groundwater quality parameters (chloride, fluoride, calcium carbonate, nitrate, pH, and total dissolved solids), were statistically analyzed assuming a normal probability function distribution and through a one-way analysis of variance of the parameters. Additionally, the depth of groundwater well versus water quality analysis as well as historical analysis of groundwater quality parameters of wells were performed. The result for each county was individually examined and contrasted with the other two counties, in order to make inferences about groundwater quality and oil and gas activities for the three counties. Potential risks to human health from the abnormal levels of the groundwater quality parameters studied were also discussed based on the Environmental Protection Agency’s (EPA) standards. This research provides important information on groundwater quality in the Permian Basin and contributes on understanding the response to development in hydraulic fracturing.


10.29173/alr2 ◽  
2015 ◽  
Vol 52 (2) ◽  
pp. 245
Author(s):  
Trent Mercier ◽  
Josh Kane ◽  
Sharbil Nammour

A cohesive master service agreement is a fundamental component of the operator–service provider relationship for the provision of oilfield services for upstream oil and gas operations. This article: explores the sometimes unique contract relationships found in the Canadian marketplace; provides an overview of key contentious issues and potential solutions, which are examined and contrasted with those seen in American and international contracts; and identifies recent relevant market trends, including special considerations for large-scale hydraulic fracturing operations and the perspectives of new international operators entering the Canadian marketplace.


2020 ◽  
Author(s):  
Sepideh Karimi ◽  
Adam Baig ◽  
Aaron Booterbaugh ◽  
Yoones Vaezi ◽  
Mark Stacey ◽  
...  

<p>Seismicity potentially induced through wastewater disposal, hydraulic fracture completion, or other industrial operations, has been a cause for increasing public concern over the last decade. Monitoring for this activity has focussed on the problems of location and characterization, often to a relatively rough degree of precision. Regulations typically spell out responses for operators should an event exceed a magnitude threshold within a specified distance of their facilities. While this type of monitoring is critical for ensuring injections be conducted effectively while minimizing potential damage from shaking and public alarm, it often leaves many unanswered questions in terms of the underlying processes.</p><p>Understanding these questions entails that we demand more out of the seismic networks, essentially upgrading the data products to a “next generation” level.  The data from the network needs to be used to provide a detailed understanding of critical geological structures and geomechanics of the study area. This goal is facilitated through both a densification of hardware and a higher order of event processing. High-precision locations delivered through relative relocation methodologies delineate slipping fault structures, often resolving previously unknown features. Moment tensor inversion processing also helps reveal the orientations of faults and provides information on stress in the region. The resolution of these structures provides critical insight into understanding how a field is reacting.</p><p>We illustrate the application of this “next-generation” seismicity monitoring system to the Delaware Basin in West Texas, where we have deployed a network of 25 broadband seismometers complementing monitoring from TexNet and other networks. Despite being an exceptionally challenging recording environment, by aggregating all of these data we obtain a high-resolution catalog of earthquake hypocenters delineating a number of fault features. Inverting the stresses from the moment tensors of the highest-quality events shows a dominantly normal stress regime and tangibly resolves a rotation of axes transitioning across the basin. We illustrate both the logistical and processing requirements necessary for timely delivery of results highlighting the dynamics of seismicity in an active study area.</p>


2018 ◽  
Vol 55 (4) ◽  
pp. 217-229
Author(s):  
Irina Filina ◽  
Kris Guthrie ◽  
Mindi Searls ◽  
Caroline Burberry

A sudden spike in earthquake events has been observed in central Nebraska. Since April 2018, 26 earthquakes with equivalent moment magnitudes from 2.7 to 4.1 occurred, clustered tightly in Custer County. A similar cluster of 24 earthquakes with equivalent moment magnitudes from 2.6 to 3.7 occurred in Jewell County in northern Kansas in 2017. We have compiled an earthquake database for Nebraska and parts of adjacent states from different sources to determine whether these recent earthquake spikes are consistent with historic seismicity. We identified two historic earthquake clusters occurring in our study area. The first contained 32 events and was active in Red Willow County in southwestern Nebraska from 1977 to 1982. As it coincides spatially with the Sleepy Hollow oil field, it may be related to enhanced oil recovery from that field, although it is also located at the edge of the Chadron-Cambridge Arch. The second historical earthquake cluster is located in Pawnee and Richardson counties in southwestern Nebraska and includes eight earthquakes with equivalent moment magnitudes of 2.3 to 2.8 that occurred in a period from 1982 to 1989 over the Nemaha uplift and appear to be related to the Humboldt fault. We note an increase in both maximum magnitude, as well as in the cumulative seismic moment per cluster with time. We have also used gravity and magnetic fields to map potential basement faults in the study area. Our analysis shows that the two recent earthquake spikes are aligned with the proposed basement faults. Despite this correlation, the cause of this sudden spike in seismicity is not well understood, as the stresses that might reactivate these basement faults are unknown. In addition, both recent clusters are distant from oil and gas operations. More seismic stations are necessary in central Nebraska in order to better detect focal depths and faulting style in the ongoing cluster of earthquakes and investigate possible causes.


2016 ◽  
Author(s):  
Edith Allison

ABSTRACT In the midst of aggressive anti-drilling campaigns by environmental organizations and well-publicized complaints by citizens unaccustomed to oil and gas operations, rigorous studies of unconventional oil and gas development show that there are no widespread or systemic impacts on drinking water resources in the United States. In addition, air pollution and greenhouse gas emissions have significantly declined with the growth in natural gas production and its use in power generation. Furthermore, induced seismicity from subsurface waste disposal has plummeted in response to industry initiatives and new regulations. This record of environmental protection reflects the fact that U.S. hydraulic fracturing, like other oil and gas operations, is highly regulated by the states. In addition, air emissions, operations on federal lands, and subsurface injection are subject to federal regulation. Academic and government researchers have documented that chemicals and gas produced by hydraulic fracturing are not contaminating drinking water. However, as an added complication, methane occurs naturally in drinking water aquifers in some producing areas. In 2015, the U.S. Environmental Protection Agency (EPA) completed a four-year study of potential aquifer contamination from hydraulic fracturing and associated industry operations. The report found some impacts on drinking water including contamination of drinking water wells; however, the number of cases was small compared to the number of wells hydraulically fractured. The scientific peer-review and public critique of the study, which continues after more than a year, may recommend additional research. The emotionally charged, anti-fracking campaigns provided important lessons to U.S. operators: pre-drilling, baseline data on water and air quality are essential to answering public concerns; infrastructure issues such as increased truck traffic on small, local roads are important to residents; and the initial failure to disclose the composition of hydraulic fracturing fluid intensified public concern.


2020 ◽  
Vol 110 (5) ◽  
pp. 2441-2453 ◽  
Author(s):  
Ganyu Teng ◽  
Jack W. Baker

ABSTRACT This project introduces short-term hazard assessment frameworks for regions with induced seismicity. The short-term hazard is the hazard induced during the injection for hydraulic-fracturing-induced earthquakes. For wastewater-disposal-induced earthquakes, it is the hazard within a few days after an observed earthquake. In West Texas, hydraulic-fracturing-induced earthquakes cluster around the injection activities, and the earthquake occurrence varies greatly in time and space. We develop a method to estimate the hazard level at the production site during the injection, based on past injection and earthquake records. The results suggest that the injection volume has a negligible effect on short-term earthquake occurrence in this case, because injection volumes per well fall within a relatively narrow range, whereas the regional variations in seismic productivity of wells and b-values are important. The framework could be easily modified for implementation in other regions with hydraulic-fracturing-induced earthquakes. We then compare the framework with wastewater-disposal-induced earthquakes in Oklahoma–Kansas and natural earthquakes in California. We found that drivers of short-term seismic hazard differ for the three cases. In West Texas, clustered earthquakes dominate seismic hazards near production sites. However, for Oklahoma–Kansas and California, the short-term earthquake occurrence after an observed mainshock could be well described by the mainshock–aftershock sequence. For Stillwater in Oklahoma, aftershocks contribute less to the hazard than San Francisco in California, due to the high Poissonian mainshock rate. For the rate of exceeding a modified Mercalli intensity of 3 within 7 days after an M 4 earthquake, the aftershock sequence from natural earthquakes contributed 85% of the hazard level, whereas the aftershock contribution was only 60% for induced earthquakes in Oklahoma. Although different models were implemented for hazard calculations in regions with hydraulic fracturing versus wastewater injection, injection activities could be drivers of short-term hazard in both cases.


Author(s):  
Daniel T. Trugman ◽  
Alexandros Savvaidis

Abstract In recent years, the Delaware basin of west Texas has seen a sharp rise in earthquake occurrence, driven in large part by increases in unconventional hydrocarbon production. The advent of Texas Seismological Network in 2017 has allowed for the characterization of these events in greater detail. We exploit the recent densification in seismic station coverage to study the spectral properties of earthquakes in this region. We show that the low-frequency moments of S-wave spectra, when corrected for site and distance, can be used to calibrate a consistent moment magnitude scale for small and moderate earthquakes. For a subset of >3000 well-recorded events, we compute earthquake stress drop under the assumption of Brune spectral model. Earthquakes in the Delaware basin show coherent spatial patterns in stress drop across the region. Through a reanalysis of independently collated data from the oil and gas industry, we find that earthquakes that are likely associated with hydraulic-fracturing operations have slightly different spectral characteristics than earthquakes that are likely associated with saltwater disposal. In particular, events associated with hydraulic fracturing show greater variability in the statistical distribution of stress drop and have higher median stress-drop values. Although the differences are subtle, they suggest that there may be important distinctions in the underlying physical mechanisms and resulting hazards of distinct classes of induced events, differences that may be unraveled with more detailed joint analyses of industrial and seismic datasets.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Weiyu Zheng ◽  
Jin-Woo Kim ◽  
Syed Tabrez Ali ◽  
Zhong Lu

Abstract Wastewater, a byproduct of oil and gas production, is injected into disposal wells. Using Interferometric Synthetic Aperture Radar (InSAR) to observe ground deformation in the Ken Regan field, West Texas, we detected surface uplift that occurred near a wastewater disposal well from 2007 to 2011. High correlation between the observed deformation and the injection volume suggests that the uplift was caused by wastewater disposal in the well. Inverse elastic models were first used to calculate the injection depth and volume. Given the initial estimates of wastewater injection, forward poroelastic finite element models were applied to simulate stress/strain and displacement fields and to estimate the effective injection volume and depth, so as to ultimately understand the subsurface geomechanical processes and provide insight into the local hydrologic properties of the strata in the well location. Results from both elastic and poroelastic models indicate that the effective injection depth is much shallower than the depth reported to the Texas Railroad Commission (RRC). The most reasonable explanation is that the well was experiencing leakage due to casing failures and/or sealing problem(s). The Rustler Aquifer, within the zone of the effective injection depth, has been used as a source of freshwater for irrigation and livestock; wastewater leaked into this aquifer may possibly contaminate that freshwater. Our analysis that exploits remote sensing data and numerical models provides a clue as to understanding the subsurface hydrogeological process responding to the oil and gas activities and an indirect leakage monitoring method to supplement current infrequent leakage detection.


2019 ◽  
Vol 3 (1) ◽  
pp. 1-14
Author(s):  
Miriam R. Aczel ◽  
Karen E. Makuch

High-volume hydraulic fracturing combined with horizontal drilling has “revolutionized” the United States’ oil and gas industry by allowing extraction of previously inaccessible oil and gas trapped in shale rock [1]. Although the United States has extracted shale gas in different states for several decades, the United Kingdom is in the early stages of developing its domestic shale gas resources, in the hopes of replicating the United States’ commercial success with the technologies [2, 3]. However, the extraction of shale gas using hydraulic fracturing and horizontal drilling poses potential risks to the environment and natural resources, human health, and communities and local livelihoods. Risks include contamination of water resources, air pollution, and induced seismic activity near shale gas operation sites. This paper examines the regulation of potential induced seismic activity in Oklahoma, USA, and Lancashire, UK, and concludes with recommendations for strengthening these protections.


Sign in / Sign up

Export Citation Format

Share Document