scholarly journals Dynamic Fault Interaction during a Fluid-Injection-Induced Earthquake: The 2017 Mw 5.5 Pohang Event

2020 ◽  
Vol 110 (5) ◽  
pp. 2328-2349
Author(s):  
Kadek Hendrawan Palgunadi ◽  
Alice-Agnes Gabriel ◽  
Thomas Ulrich ◽  
José Ángel López-Comino ◽  
Paul Martin Mai

ABSTRACT The 15 November 2017 Mw 5.5 Pohang, South Korea, earthquake has been linked to hydraulic stimulation and fluid injections, making it the largest induced seismic event associated with an enhanced geothermal system. To understand its source dynamics and fault interactions, we conduct the first 3D high-resolution spontaneous dynamic rupture simulations of an induced earthquake. We account for topography, off-fault plastic deformation under depth-dependent bulk cohesion, rapid velocity weakening friction, and 1D subsurface structure. A guided fault reconstruction approach that clusters spatiotemporal aftershock locations (including their uncertainties) is used to identify a main and a secondary fault plane that intersect under a shallow angle of 15°. Based on simple Mohr–Coulomb failure analysis and 180 dynamic rupture experiments in which we vary local stress loading conditions, fluid pressure, and relative fault strength, we identify a preferred two-fault-plane scenario that well reproduces observations. We find that the regional far-field tectonic stress regime promotes pure strike-slip faulting, whereas local stress conditions constrained by borehole logging generate the observed thrust-faulting component. Our preferred model is characterized by overpressurized pore fluids, nonoptimally oriented but dynamically weak faults and a close-to-critical local stress state. In our model, earthquake rupture “jumps” to the secondary fault by dynamic triggering, generating a measurable non-double-couple component. Our simulations suggest that complex dynamic fault interaction may occur during fluid-injection-induced earthquakes and that local stress perturbations dominate over regional stress conditions. Therefore, our findings have important implications for seismic hazard in active georeservoir.

2020 ◽  
Vol 6 (1) ◽  
pp. 42-56
Author(s):  
Cahli Suhendi ◽  
Mohammad Rachmat Sule

CO2 injection into subsurface formations is a potential method to reduce CO2 gas emissions in the atmosphere. Geological and geophysical studies are carried out as an effort to analyze the storage capacity and potential risks. The results are then used to analyze the response of reservoir rock to the injected CO2 fluid. The effect of fluid injection on reservoir rocks is complex and involves a coupled system of fluid flow-geomechanics. CO2 fluid injection can increase fluid pressure that affects the local stress conditions of reservoir and surrounding rock. Meanwhile, changes in temperature due to the presence of CO2 fluid also affect reservoir rock stress, although not significantly. The complexity of the subsurface reservoir system includes thermomechanical and hydromechanical analysis involving multi-phase and multi-component fluids. To study these complex interactions, a program which can simulate the coupling between multi-phase and multi-component fluid-flows-geomechanics is needed. To accommodate these needs, Rutqvist et al (2002) have proposed a numerical modeling approach by linking TOUGH2-ECO2N and FLAC3D. In this study we developed an external program that linking TOUGH2 with different fluid modul (ECO2M), and FLAC3D using these approaches to run the coupled THM simulation automatically and seamlessly until the end of simulation.


2020 ◽  
Author(s):  
Kadek Hendrawan Palgunadi ◽  
Alice-Agnes Gabriel ◽  
Thomas Ulrich ◽  
José Lopéz-Comino ◽  
P. Mai

Author(s):  
Ernest Rutter ◽  
Abigail Hackston

Fluid injection into rocks is increasingly used for energy extraction and for fluid wastes disposal, and can trigger/induce small- to medium-scale seismicity. Fluctuations in pore fluid pressure may also be associated with natural seismicity. The energy release in anthropogenically induced seismicity is sensitive to amount and pressure of fluid injected, through the way that seismic moment release is related to slipped area, and is strongly affected by the hydraulic conductance of the faulted rock mass. Bearing in mind the scaling issues that apply, fluid injection-driven fault motion can be studied on laboratory-sized samples. Here, we investigate both stable and unstable induced fault slip on pre-cut planar surfaces in Darley Dale and Pennant sandstones, with or without granular gouge. They display contrasting permeabilities, differing by a factor of 10 5 , but mineralogies are broadly comparable. In permeable Darley Dale sandstone, fluid can access the fault plane through the rock matrix and the effective stress law is followed closely. Pore pressure change shifts the whole Mohr circle laterally. In tight Pennant sandstone, fluid only injects into the fault plane itself; stress state in the rock matrix is unaffected. Sudden access by overpressured fluid to the fault plane via hydrofracture causes seismogenic fault slips. This article is part of the themed issue ‘Faulting, friction and weakening: from slow to fast motion’.


2021 ◽  
Author(s):  
Kadek Hendrawan Palgunadi ◽  
Alice-Agnes Gabriel ◽  
Dimitry Garagash ◽  
Paul Martin Mai

<p>The increasing rate of induced seismicity in subsurface reservoirs, exceeding occasionally moment magnitude 5, has generated significant attention among earthquake scientists and regulators over the last decade. Fluid injection activity during the operation stage often produces a significant, sometimes even destructive, earthquake. Many approaches have been proposed to monitor, model, and predict the injection-related seismicity to avoid an earthquake larger than a threshold set by the regulator (e.g., Mw 2.0). However, unexpected higher magnitude events occur exceeding what is predicted by empirical models, theoretical relations, or computer simulations. </p><p>Current models do not consider that subsurface reservoirs consist of complex fracture networks characterized by connected and unconnected individual fracture planes, often comprising a larger but inactive fault (unfavorably oriented with respect to regional stress). Fluid injection may then perturb stress conditions and trigger an initial rupture on fractures close to the injection well; this initial event may then dynamically trigger other fractures and potentially generate a large earthquake. </p><p>We inspect conditions leading to induced earthquakes taking into account the complex fracture network intersected to an inactive fault using dynamic earthquake rupture simulations. We generate the fracture network using a nearest-neighbor method following statistical parameters (power-law distribution of fracture length and fracture density) based on field data. There are 134 fractures consisting of 95 connected fractures, 3 fractures connected with at least one fracture, and 38 unconnected fractures. We focus on two fracture populations oriented in strike N110E ± 10° and N210E ± 10°, respectively. The main fault has a depth-dependent dip orientation which results in a listric fault geometry. </p><p>For our dynamic rupture simulations, we use the open-source software SeisSol (https://github.com/SeisSol/SeisSol), apply a laboratory-based rate-and-state with rapid velocity weakening friction law, and assign source radius-dependent characteristic length (L parameter) to the fractures. We vary stress conditions (maximum horizontal orientation, static-pore pressure, and prestress ratio) and conduct an initial static Mohr-Coulomb analysis before running the expensive dynamic rupture simulation. We choose conditions that lead to cascading rupture with (case 1) and without (case 2) the involvement of the main fault. Case 1 has higher artificial overstress within the nucleation area than case 2. Our simulation shows intricate rupture progression over small fractures via rupture branching with the parallel and orthogonal connected fractures. The rupture can also transfer to the unconnected fractures through dynamic triggering from the closest neighboring fracture. Case 1 produces a moment magnitude of Mw 6.36 that is equivalent to case 2. Our preliminary result reveals that connected fractures can generate a significant and potentially large induced earthquake if all fractures are favorable to the stress condition.</p>


2021 ◽  
Author(s):  
Ake Fagereng ◽  
Adam Beall

<p>Current conceptual fault models define a seismogenic zone, where earthquakes nucleate, characterised by velocity-weakening fault rocks in a dominantly frictional regime. The base of the seismogenic zone is commonly inferred to coincide with a thermally controlled onset of velocity-strengthening slip or distributed viscous deformation. The top of the seismogenic zone may be determined by low-temperature diagenetic processes and the state of consolidation and alteration. Overall, the seismogenic zone is therefore described as bounded by transitions in frictional and rheological properties. These properties are relatively well-determined for monomineralic systems and simple, planar geometries; but, many exceptions, including deep earthquakes, slow slip, and shallow creep, imply processes involving compositional, structural, or environmental heterogeneities. We explore how such heterogeneities may alter the extent of the seismogenic zone.</p><p> </p><p>We consider mixed viscous-frictional deformation and suggest a simple rule of thumb to estimate the role of heterogeneities by a combination of the viscosity contrast within the fault, and the ratio between the bulk shear stress and the yield strength of the strongest fault zone component. In this model, slip behaviour can change dynamically in response to stress and strength variations with depth and time. We quantify the model numerically, and illustrate the idea with a few field-based examples: 1) earthquakes within the viscous regime, deeper than the thermally-controlled seismogenic zone, can be triggered by an increase in the ratio of shear stress to yield strength, either by increased fluid pressure or increased local stress; 2) there is commonly a depth range of transitional behaviour at the base of the seismogenic zone – the thickness of this zone increases markedly with increased viscosity contrast within the fault zone; and 3) fault zone weakening by phyllosilicate growth and foliation development increases viscosity ratio and decreases bulk shear stress, leading to efficient, stable, fault zone creep. These examples are not new interpretations or observations, but given the substantial complexity of heterogeneous fault zones, we suggest that a simplified, conceptual model based on basic strength and stress parameters is useful in describing and assessing the effect of heterogeneities on fault slip behaviour.         </p>


2021 ◽  
Vol 48 (19) ◽  
Author(s):  
J. B. Zhu ◽  
J. Q. Kang ◽  
D. Elsworth ◽  
H. P. Xie ◽  
Y. Ju ◽  
...  

1981 ◽  
Vol 71 (1) ◽  
pp. 95-116 ◽  
Author(s):  
Allan G. Lindh ◽  
David M. Boore

abstract A reanalysis of the available data for the 1966 Parkfield, California, earthquake (ML=512) suggests that although the ground breakage and aftershocks extended about 40 km along the San Andreas Fault, the initial dynamic rupture was only 20 to 25 km in length. The foreshocks and the point of initiation of the main event locate at a small bend in the mapped trace of the fault. Detailed analysis of the P-wave first motions from these events at the Gold Hill station, 20 km southeast, indicates that the bend in the fault extends to depth and apparently represents a physical discontinuity on the fault plane. Other evidence suggests that this discontinuity plays an important part in the recurrence of similar magnitude 5 to 6 earthquakes at Parkfield. Analysis of the strong-motion records suggests that the rupture stopped at another discontinuity in the fault plane, an en-echelon offset near Gold Hill that lies at the boundary on the San Andreas Fault between the zone of aseismic slip and the locked zone on which the great 1857 earthquake occurred. Foreshocks to the 1857 earthquake occurred in this area (Sieh, 1978), and the epicenter of the main shock may have coincided with the offset zone. If it did, a detailed study of the geological and geophysical character of the region might be rewarding in terms of understanding how and why great earthquakes initiate where they do.


Geofluids ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-23 ◽  
Author(s):  
Rob Westaway ◽  
Neil M. Burnside

The November 2017 MW 5.5 Pohang earthquake is one of the largest and most damaging seismic events to have occurred in the Korean peninsula over the last century. Its close proximity to an Enhanced Geothermal System (EGS) site, where hydraulic injection into granite had taken place over the previous two years, has raised the possibility that it was anthropogenic; if so, it was by far the largest earthquake caused by any EGS project worldwide. However, a potential argument that this earthquake was independent of anthropogenic activity considers the delay of two or three months before its occurrence, following the most recent injection into each of the wells. A better understanding of the physical and chemical processes that occur following fluid injection into granite is thus warranted. We show that hydrochemical changes occurring while surface water, injected into granite, reequilibrates chemically with its subsurface environment, can account for time delays for earthquake occurrence of such duration, provided the seismogenic fault was already critically stressed, or very close to the condition for slip. This candidate causal mechanism counters the potential argument that the time delay militates against an anthropogenic cause of the Pohang earthquake and can account for its relatively large magnitude as a consequence of a relatively small-volume injection. The resulting analysis places bounds on combinations of physical and chemical properties of rocks, injected volume, and potential postinjection time delays for significant anthropogenic seismicity during future EGS projects in granite.


2021 ◽  
Vol 40 (6) ◽  
pp. 413-417
Author(s):  
Chunfang Meng ◽  
Michael Fehler

As fluids are injected into a reservoir, the pore fluid pressure changes in space and time. These changes induce a mechanical response to the reservoir fractures, which in turn induces changes in stress and deformation to the surrounding rock. The changes in stress and associated deformation comprise the geomechanical response of the reservoir to the injection. This response can result in slip along faults and potentially the loss of fluid containment within a reservoir as a result of cap-rock failure. It is important to recognize that the slip along faults does not occur only due to the changes in pore pressure at the fault location; it can also be a response to poroelastic changes in stress located away from the region where pore pressure itself changes. Our goal here is to briefly describe some of the concepts of geomechanics and the coupled flow-geomechanical response of the reservoir to fluid injection. We will illustrate some of the concepts with modeling examples that help build our intuition for understanding and predicting possible responses of reservoirs to injection. It is essential to understand and apply these concepts to properly use geomechanical modeling to design geophysical acquisition geometries and to properly interpret the geophysical data acquired during fluid injection.


Energies ◽  
2020 ◽  
Vol 13 (22) ◽  
pp. 5878
Author(s):  
Grazia De Landro ◽  
Ortensia Amoroso ◽  
Guido Russo ◽  
Aldo Zollo

The monitoring of rock volume where offshore exploitation activities take place is crucial to assess the corresponding seismic hazard. Fluid injection/extraction operations generate a pore fluid pressure perturbation into the volume hosting the reservoir which, in turn, may trigger new failures and induce changes in the elastic properties of rocks. Our purpose is to evaluate the feasibility of reconstructing pore pressure perturbation diffusion in the host medium by imaging the 4D velocity changes using active seismic. We simulated repeated active offshore surveys and imaged the target volume. We constructed the velocity model perturbed by the fluid injection using physical modeling and evaluated under which conditions the repeated surveys could image the velocity changes. We found that the induced pressure perturbation causes seismic velocity variations ranging between 2–5% and 15–20%, depending on the different injection conditions and medium properties. So, in most cases, time-lapse tomography is very efficient in tracking the perturbation. The noise level characterizing the recording station sites is a crucial parameter. Since we evaluated the feasibility of the proposed 4D imaging strategy under different realistic environmental and operational conditions, our results can be directly applied to set up and configure the acquisition layout of surveys aimed at retrieving fluid-induced medium changes in the hosting medium. Moreover, our results can be considered as a useful starting point to design the guidelines to monitor exploitation areas.


Sign in / Sign up

Export Citation Format

Share Document