scholarly journals Fe(III)-Aqua Complex Mediated Photodegradation of Methylene Blue Dye

Author(s):  
Ashfeen Nawar ◽  
◽  
Md. Ataur Rahman ◽  
Md. Mufazzal Hossain

Industrialization in the current times has become extremely rapid. Some of these industries are responsible for discharging dye-containing wastewater into natural water bodies and hence causing environmental deterioration. The purpose of this research is to investigate an inexpensive and easy-to-set-up photodegradation process for the mineralization of methylene blue (MB) dye. The optimum conditions required for maximum degradation of the dye were explored by varying different experimental parameters such as the initial concentration of Fe(III) and dye, pH of the reaction mixture, nature of light sources, and intensity of ultraviolet (UV) light. Approximately 97% photodegradation of methylene blue was recorded at pH 2.30 for the optimum concentration of MB of 3.00 × 10−5 M and Fe(III) aqueous solution of 8.00 × 10−4 M when irradiated under UV light of intensity 3.31 × 10−9 Ein cm−3 s−1. Under sunlight, with similar experimental conditions, 73% degradation of the dye was achieved. This is an environment-friendly, efficient, and low-cost degradation process of methylene blue.

2018 ◽  
Vol 19 (1) ◽  
pp. 112-122 ◽  
Author(s):  
Taous Hamad ◽  
◽  
Zoubir Benmaamar ◽  
Mohamad Nedjioui ◽  
Ahmed Boucherit ◽  
...  

Activated carbon was produced from Sapindusfruitresidue and wasused for the adsorption of methylene blue dye from simulated aqueous solution. Adsorption kinetics of methylene blue onto actived carbonwerestudied in a batch system. The effects of pH and contact time were examined. The goal of the present study was the determination of the optimal experimental conditions. The maximum adsorption of methylene blue occurredat pH 6.0(4.83 mg/g) and the lowest adsorption occurred at pH 2.0(4.35 mg/g).120 min was the time needed for apparent equilibrium.Adsorption modelling was determined by using theFreundlich and Langmuir isotherms.Data were interpreted based on R2and various error distribution functions. Adsorption isotherm was best described bynon linear Freundlichisotherm model. In order to determine the best-fit-adsorption kinetics, the experimental data were analyzed using pseudo-first-order, pseudo-second-order, pseudo-third-order, Esquivel, and Elovichmodels. The needed relative parameters were determined bylinear and non-linear regressive methods. The statistical functions were estimated to find the suitable method which fit the experimental data. Both methods were suitable to obtain the required parameters. The model that best fit the present equilibrium data was the linear Elovichmodel (type 1 and 2). The present work showed that activated carbon can be used as a low cost adsorbent for the methylene blue removal from aqueous solutions.


Author(s):  
Parisa Ebrahimi ◽  
◽  
Anand Kumar

Dye wastewater produced in textile industries is a warning issue that threatens the environment due to discharge into the waterway. This study reviewed the adsorption of Methylene Blue (MB), as a toxic dye, onto diatomite adsorbent. A series of chemical modifications were examined by impregnating diatomite into various acidic and basic solutions to obtain the most active sample with the highest capacity. Both raw diatomite (RD) and modified diatomite (MD) were analyzed under different experimental conditions, such as PH, contact time, the dose of adsorbent to attain the optimum quantities of each in which adsorption capacity and removal percentage were in their highest amount. FESEM analysis indicated the surface characterization and the morphology of both adsorbents. The results of batch experiments showed that the equilibration removal capacities of MB under the optimum condition were 72 mg/g for RD and 127 mg/g for MD. Overall results suggested that due to the low-cost, naturally available, simple treatment methods and materials, and sustainability, the modified adsorbent has the potential for dye removal in the practical process.


Materials ◽  
2020 ◽  
Vol 13 (13) ◽  
pp. 2938 ◽  
Author(s):  
Rosanna Pagano ◽  
Chiara Ingrosso ◽  
Gabriele Giancane ◽  
Ludovico Valli ◽  
Simona Bettini

It is well known that energetic demand and environmental pollution are strictly connected; the side products of vehicle and industrial exhausts are considered extremely dangerous for both human and environmental health. In the last years, the possibility to simultaneously photo-degrade water dissolved pollutants by means of ZnO nanostructures and to use their piezoelectric features to enhance the photo-degradation process has been investigated. In the present contribution, an easy and low-cost wet approach to synthetize hexagonal elongated ZnO microstructures in the wurtzite phase was developed. ZnO performances as photo-catalysts, under UV-light irradiation, were confirmed on water dissolved methylene blue dye. Piezoelectric responses of the synthetized ZnO microstructures were evaluated, as well, by depositing them into films onto flexible substrates, and a home-made layout was developed, in order to stimulate the ZnO microstructures deposited on solid supports by means of mechanical stress and UV photons, simultaneously. A relevant increment of the photo-degradation efficiency was observed when the piezopotential was applied, proposing the present approach as a completely eco-friendly tool, able to use renewable energy sources to degrade water solved pollutants.


2014 ◽  
Vol 699 ◽  
pp. 221-226
Author(s):  
Nurul Hanim Razak ◽  
Md. Razali Ayob ◽  
M.A.M. Zainin ◽  
M.Z. Hilwa

Eggshells and rice husk, two types of notable agricultural waste were used as bioadsorbent to remove Methylene Blue dye (MBD) in aqueous solution. This study was to investigate the performance of these two bioadsorbents in removing MBD. The removal percentage, adsorption capacity, and porosity characterization were examined. The method applied was a physical filtration. UV-VIS Spectrophotometer was used to determine the efficiency of the bioadsorbents in MBD adsorption. The highest removal percentage at the most concentrated MBD were 51% and 98% for eggshells and rice husks respectively. Meanwhile the characterization of rice husks pore size and volume proves that higher adsorptivity towards dye compares to eggshells porosity. It was concluded that the eggshells and rice husks bioadsorbents was successful to treat industrial textile wastewater with rice husks as the most efficient bioadsorbent in removing MBD.


2013 ◽  
Vol 65 (1) ◽  
Author(s):  
Norzita Ngadi ◽  
Chin Chiek Ee ◽  
Nor Aida Yusoff

Dyes contain carcinogenic materials which can cause serious hazards to aquatic life and the users of water. Textile industry is the main source of dye wastewater which results in environmental pollution. Many studies have been conducted to investigate the use of low cost adsorbent as an alternative technique for the adsorption of dye. The objective of this study is to determine the potential of eggshell powder as an adsorbent for methylene blue removal and find out the best operating conditions for the color adsorption at laboratory scale. The adsorption of cationic methylene blue from aqueous solution onto the eggshell powder was carried out by varying the operating parameters which were contact time, pH, dosage of eggshell powder and temperature in order to study their effect in adsorption capacity of eggshell powder. The results obtained showed that the best operating condition for removal of methylene blue was at pH 10 (78.98 %) and temperature 50°C (47.37 %) by using 2 g of eggshell powder (57.03 %) with 30 minutes equilibrium time (41.36 %). The kinetic studies indicated that pseudo-second-order model best described the adsorption process.


Author(s):  
Juraj Michálek ◽  
Kseniya Domnina ◽  
Veronika Kvorková ◽  
Kristína Šefčovičová ◽  
Klaudia Mončeková ◽  
...  

Abstract The usage of the low-cost catalysts for methylene blue removal from wastewater was investigated. Heterogeneous Fenton-like process consists of the use of a hydrogen peroxide solution, and an iron-rich catalyst, red mud and black nickel mud were used for that purpose. The factors such as the catalyst dose and the hydrogen peroxide solution volume were monitored. The results of experiments showed that the degradation of methylene blue dye in Fenton-like oxidation process using selected catalysts can be described by a pseudo-second-order kinetic model. The highest dye removal efficiency (87.15 %) was achieved using the black nickel mud catalyst after 30 minutes of reaction.


2019 ◽  
Vol 79 (8) ◽  
pp. 1561-1570
Author(s):  
Wei Chen ◽  
Fengting Chen ◽  
Bin Ji ◽  
Lin Zhu ◽  
Hongjiao Song

Abstract The adsorption behavior and the underlying mechanism of methylene blue (MB) sorption on biochars prepared from different feedstocks at 500 °C were evaluated. The biochar feedstocks included Magnolia grandiflora Linn. leaves biochar (MBC), pomelo (Citrus grandis) peel biochar (PBC) and badam shell biochar (BBC). The results of characterizing and analyzing the samples showed that different biochars had different effects on the adsorption of MB. It could be found that MBC had the best adsorption effect on MB due to its largest average pore diameter of 5.55 nm determined by Brunauer-Emmett-Teller analysis. Under the optimal conditions, the maximum adsorption capacities of BBC, PBC and MBC were 29.7, 85.15 and 99.3 mg/g, respectively. The results showed that the amount of adsorption was affected by the pH value. The maximum adsorption capacity of MBC was 46.99 mg/g when it was at pH of 3, whereas for the same experimental conditions the maximum adsorption capacity of BBC and PBC was 25.29 mg/g at pH of 11 and 36.08 mg/g at pH of 7, respectively. Therefore, MBC was found to be a most efficient low-cost adsorbentl for dye wastewater treatment compared with BBC and PBC, and it had the best removal effect under acidic conditions.


2020 ◽  
Vol 979 ◽  
pp. 175-179
Author(s):  
M. Nagalakshmi ◽  
N. Anusuya ◽  
S. Karuppuchamy

Titanium dioxide (TiO2) nanoparticles have been successfully prepared by biological method and the resulting material was characterized by XRD, FTIR, SEM, EDAX and UV-Vis spectroscopy. The synthesized TiO2 materials successfully degraded the methylene blue dye (MB) under UV light irradiation.


Sign in / Sign up

Export Citation Format

Share Document