scholarly journals Heat Treatment Effect On Magnetic Properties Of Finemet-Type Films

2016 ◽  
Vol 1 (1) ◽  
pp. 109
Author(s):  
E.A. Mikhalitsyna ◽  
V.A. Kataev ◽  
V.N. Lepalovskij ◽  
A. Larrañaga ◽  
A.S. Volegov

<p>A study of the heat treatment effect on the structure and magnetic properties of the amorphous and nanocrystalline Finemet-type thin films of the compositions Fe<sub>73.9</sub>Si<sub>13.2</sub>B<sub>8.9</sub>Nb<sub>3</sub>Cu<sub>1</sub> and Fe<sub>72.5</sub>Si<sub>14.2</sub>B<sub>8.7</sub>Nb<sub>2</sub>Mo<sub>1.5</sub>Cu<sub>1.1</sub> were performed by means of X-ray diffraction, magneto-optical Kerr-microscopy, and magnetic properties measurement system. The heat treatment leads to magnetic anisotropy decreasing as a result of crystallization processes, which are heavily dependent on the alloy’s composition.<strong></strong></p>

2005 ◽  
Vol 244 (1-4) ◽  
pp. 281-284 ◽  
Author(s):  
Naohiko Kato ◽  
Ichiro Konomi ◽  
Yoshiki Seno ◽  
Tomoyoshi Motohiro

2013 ◽  
Vol 275-277 ◽  
pp. 1952-1955
Author(s):  
Ling Fang Jin ◽  
Xing Zhong Li

New functional nanocomposite FePt:C thin films with FePt underlayers were synthesized by noneptaxial growth. The effect of the FePt layer on the ordering, orientation and magnetic properties of the composite layer has been investigated by adjusting FePt underlayer thickness from 2 nm to 14 nm. Transmission electron microscopy (TEM), together with x-ray diffraction (XRD), has been used to check the growth of the double-layered films and to study the microstructure, including the grain size, shape, orientation and distribution. XRD scans reveal that the orientation of the films was dependent on FePt underlayer thickness. In this paper, the TEM studies of both single-layered nonepitaxially grown FePt and FePt:C composite L10 phase and double-layered deposition FePt:C/FePt are presented.


Materials ◽  
2020 ◽  
Vol 13 (6) ◽  
pp. 1454
Author(s):  
Gabriele Barrera ◽  
Federico Scaglione ◽  
Matteo Cialone ◽  
Federica Celegato ◽  
Marco Coïsson ◽  
...  

Bimetallic nanomaterials in the form of thin film constituted by magnetic and noble elements show promising properties in different application fields such as catalysts and magnetic driven applications. In order to tailor the chemical and physical properties of these alloys to meet the applications requirements, it is of great importance scientific interest to study the interplay between properties and morphology, surface properties, microstructure, spatial confinement and magnetic features. In this manuscript, FePd thin films are prepared by electrodeposition which is a versatile and widely used technique. Compositional, morphological, surface and magnetic properties are described as a function of deposition time (i.e., film thickness). Chemical etching in hydrochloric acid was used to enhance the surface roughness and help decoupling crystalline grains with direct consequences on to the magnetic properties. X-ray diffraction, SEM/AFM images, contact angle and magnetic measurements have been carried out with the aim of providing a comprehensive characterisation of the fundamental properties of these bimetallic thin films.


2012 ◽  
Vol 05 ◽  
pp. 841-846
Author(s):  
AMIR KEYVANARA ◽  
REZA GHOLAMIPOUR ◽  
SHAMSEDIN MIRDAMADI ◽  
FARZAD SHAHRI ◽  
HOSSEIN SEPEHRI AMIN

Melt spun ribbons of Co 64 Fe 4 Ni 2 B 19 Si 8 Cr 3 alloy have been prepared and the nanocrystallization process was carried out by the heat treatment of the as spun ribbons above the crystallization temperature. Structural studies of the samples have been performed by transmission electron microscopy and X-ray diffraction. Magnetic properties of the samples and magnetoimpedance measurements were investigated and it was revealed that magnetic properties and magnetoimpedance of the samples deteriorate by the formation of nanocrystalline phases.


2013 ◽  
Vol 313-314 ◽  
pp. 254-257
Author(s):  
Ling Fang Jin ◽  
Hong Zhuang

Nonepitaxially grown FePt (x)/FePt:C thin films were synthesized, where FePt (x) (x=2, 5, 8, 11, 14 nm) layers were served as underlayers and FePt:C layer was nanocomposite with thickness of 5 nm. The effect of FePt underlayer on the ordering, orientation and magnetic properties of FePt:C thin films has been investigated by adjusting FePt underlayer thicknesses from 2 nm to 14 nm. X-ray diffraction (XRD), together with transmission electron microscopy (TEM) confirmed that the desired L10 phase was formed and films were (001) textured with FePt underlayer thickness decreased less 5 nm. For 5 nm FePt:C nanocomposite thin film with 2 nm FePt underlayer, the coercivity was 8.2 KOe and the correlation length of FePt:C nanocomposite film was 67 nm. These results reveal that the better orientation and magnetic properties for FePt:C nanocomposite films can be tuned by decreasing FePt underlayer thickness.


2013 ◽  
Vol 385-386 ◽  
pp. 7-10
Author(s):  
Ling Fang Jin ◽  
Hong Zhuang

Nonepitaxially grown double-layered films were synthesized with a FePt: C composite layer on top of continuous FePt underlayer. The thickness of FePt was changed from 2 nm to 14 nm. Nanostructures, crystalline orientations and the effect of FePt underlayer on the ordering, orientation and magnetic properties of the thin films were investigated by transmission electron microscopy (TEM) and x-ray diffraction (XRD). XRD confirmed the formation of the ordered L10phase for 5 nm FePt: C film with FePt thickness decreased to 5 nm. TEM studies of FePt:C composite L10phase and double-layered deposition FePt:C/FePt were presented.


1987 ◽  
Vol 01 (02) ◽  
pp. 571-574
Author(s):  
Jia-qi Zheng ◽  
Guo-guang Zheng ◽  
Dong-qi Li ◽  
Wei Wang ◽  
Jin-min Xue ◽  
...  

Y-Ba-Cu-O thin films are deposited onto severval kinds of substrates by electron beam evaporating in a high vacuum system. After the heat treatment at 850–890°c for 1hr the Y-Ba-Cu-O films on the BaF2 substrates show superconducting behaviors with the midpoint Tc around 87K and zero resistance temperature at 77K. The composition and stucture analysis of these films have been studied by AES, XRFS and x-ray diffraction.


Materials ◽  
2020 ◽  
Vol 13 (2) ◽  
pp. 348 ◽  
Author(s):  
Evgeniya A. Mikhalitsyna ◽  
Vasiliy A. Kataev ◽  
Aitor Larrañaga ◽  
Vladimir N. Lepalovskij ◽  
Galina V. Kurlyandskaya

A growing variety of microelectronic devices and magnetic field sensors as well as a trend of miniaturization demands the development of low-dimensional magnetic materials and nanostructures. Among them, soft magnetic thin films of Finemet alloys are appropriate materials for sensor and actuator devices. Therefore, one of the important directions of the research is the optimization of thin film magnetic properties. In this study, the structural transformations of the Fe73.5Nb3Cu1Si13.5B9 and Fe72.5Nb1.5Mo2Cu1.1Si14.2B8.7 films of 100, 150 and 200 nm thicknesses were comparatively analyzed together with their magnetic properties and magnetic anisotropy. The thin films were prepared using the ion-plasma sputtering technique. The crystallization process was studied by certified X-ray diffraction (XRD) methods. The kinetics of crystallization was observed due to the temperature X-ray diffraction (TDX) analysis. Magnetic properties of the films were studied by the magneto-optical Kerr microscopy. Based on the TDX data the delay of the onset crystallization of the films with its thickness decreasing was shown. Furthermore, the onset crystallization of the 150 and 200 nm films began at the temperature of about 400–420 °C showing rapid grain growth up to the size of 16–20 nm. The best magnetic properties of the films were formed after crystallization after the heat treatment at 350–400 °C when the stress relaxation took place.


2005 ◽  
Vol 475-479 ◽  
pp. 1383-1386 ◽  
Author(s):  
Fei Zhao ◽  
Kuibei Wan ◽  
Farong Wan ◽  
Yi Long ◽  
Yongli Xu ◽  
...  

This paper reported the low activation martensitic steels which are being studied to develop the structural materials in fusion reactors. The steels were based on 9Cr1.5WVTa, but the effect of alloy elements was investigated by changing the amounts of alloy elements or adding other elements. The structure and properties of the steels were studied by tensile experiment, X-ray diffraction, SEM, TEM. Also the metallurgical process and heat treatment effect were discussed.


1991 ◽  
Vol 232 ◽  
Author(s):  
A. Waknis ◽  
E. Haftek ◽  
M. Tan ◽  
J. A. Barnard ◽  
E. Tsang

ABSTRACTPeriodic multilayer thin films of the form (xAl/yNi)n were grown by alternate deposition of pure Al and Ni using dc-magnetron sputtering. The thicknesses of the individual Al and Ni layers are given by x and y, respectively, and the total number of bilayer units is n. For this set of experiments, x was fixed at 3.5 nm while y was systematically varied from 2.4 to 154 nm. The films were tested in as-deposited and annealed states for magnetic properties using a vibrating sample magnetometer and for crystal structure by x-ray diffraction. In both the as-deposited and annealed samples the magnetization per unit volume of Ni declined as the Ni layer thickness decreased. This result can be interpreted in terms of a magnetically ‘dead’ layer at the Al/Ni interfaces. The width of the dead layer increased from 2.9 nm to 5.8 nm on annealing. Magnetic properties were correlated with crystal structure experiments by x-ray diffraction. As-deposited films yielded a Ni(111) texture. The Ni (111) peak decreased in intensity and broadened as the Ni thickness declined. Annealing produced evidence for the growth of the intermetallic NiAl3.


Sign in / Sign up

Export Citation Format

Share Document