scholarly journals Cognitive and Neurolinguistic Aspects of Interpreting

2021 ◽  
Vol 12 (4) ◽  
pp. 224-237
Author(s):  
Halyna Onyshchak ◽  
Liudmyla Koval ◽  
Olena Vazhenina ◽  
Ivan Bakhov ◽  
Roksolana Povoroznyuk ◽  
...  

Over the past decade, a large and growing body of literature has explored the cognitive and neural foundations of interpreting processes. The article explores the relevance of cognitive and neurolinguistic approaches to the process of both simultaneous and consecutive interpreting. The main objective is to reveal the interpreter’s status, his/her mental and linguistic operations as cognitive units in the approaches under review. Firstly, we discuss how both interpreting modes have been understood and defined by various researchers. Secondly, we present the overview of diverse research works on cognitive and neurolinguistic scientific approaches to interpretation, trying to understand and explain the operating of interpreters’ minds. Finally, we focus on the issues of bilingualism and its impact on language comprehension and its production. It has been revealed that interpreting contributes significantly to improving cognitive and neural functions of the brain. Interpreters have always been a key figure in facilitating and bridging communication across cultures and languages. They can input, retain, retrieve, and output data but are limited in processing capacity at any given time. Quite recently, scholars in both interpreting and neurolinguistics have attempted to provide insight into the organization of bilingual speakers’ minds. In interpreting and translation tasks, it has been complemented by research works into language control in a bilingual language mode, with both language systems being simultaneously activated. Taken together, the cognitive and neurolinguistic studies reviewed in the paper support strong recommendations to regard an interpreter as a conceptual mediator relying on both his/her decision-making and probability thinking mechanisms.

2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Lorenza Magno ◽  
Tom D. Bunney ◽  
Emma Mead ◽  
Fredrik Svensson ◽  
Magda N. Bictash

AbstractThe central role of the resident innate immune cells of the brain (microglia) in neurodegeneration has become clear over the past few years largely through genome-wide association studies (GWAS), and has rapidly become an active area of research. However, a mechanistic understanding (gene to function) has lagged behind. That is now beginning to change, as exemplified by a number of recent exciting and important reports that provide insight into the function of two key gene products – TREM2 (Triggering Receptor Expressed On Myeloid Cells 2) and PLCγ2 (Phospholipase C gamma2) – in microglia, and their role in neurodegenerative disorders. In this review we explore and discuss these recent advances and the opportunities that they may provide for the development of new therapies.


Author(s):  
Tin Moe Nwe ◽  
San San Aye ◽  
Khin Than Yee ◽  
Soe Lwin ◽  
Vidya Bhagat

Adolescence is a critical stage of the developmental trajectory, where a child’s transition to independent living may result in healthy or unhealthy styles. During this period, it is easier to mend an individual as a healthy adult; at the same time, misguided children may enter into risky behaviors. The aim of the study to get an insight into changing brains of adolescents and their behavioral outcomes. The current review search engine proceeds with reviewing the literature in the past through electronic databases such as PubMed, Medline, and Scopus databases using keywords such as adolescent stage, the brain of teenagers, risk behaviors, reduction in gray matter in the prefrontal cortex. The current study reviewed and analyzed 20 articles. The reviewed articles would increase the awareness and insights regarding brain changes and their behavioral outcomes. This insightful information’s drawn out of the study may help professionals and parents who intervene the adolescent’s problem behaviors.


TAPPI Journal ◽  
2015 ◽  
Vol 14 (1) ◽  
pp. 51-60
Author(s):  
HONGHI TRAN ◽  
DANNY TANDRA

Sootblowing technology used in recovery boilers originated from that used in coal-fired boilers. It started with manual cleaning with hand lancing and hand blowing, and evolved slowly into online sootblowing using retractable sootblowers. Since 1991, intensive research and development has focused on sootblowing jet fundamentals and deposit removal in recovery boilers. The results have provided much insight into sootblower jet hydrodynamics, how a sootblower jet interacts with tubes and deposits, and factors influencing its deposit removal efficiency, and have led to two important innovations: fully-expanded sootblower nozzles that are used in virtually all recovery boilers today, and the low pressure sootblowing technology that has been implemented in several new recovery boilers. The availability of powerful computing systems, superfast microprocessors and data acquisition systems, and versatile computational fluid dynamics (CFD) modeling capability in the past two decades has also contributed greatly to the advancement of sootblowing technology. High quality infrared inspection cameras have enabled mills to inspect the deposit buildup conditions in the boiler during operation, and helped identify problems with sootblower lance swinging and superheater platens and boiler bank tube vibrations. As the recovery boiler firing capacity and steam parameters have increased markedly in recent years, sootblowers have become larger and longer, and this can present a challenge in terms of both sootblower design and operation.


2020 ◽  
Vol 20 (9) ◽  
pp. 800-811 ◽  
Author(s):  
Ferath Kherif ◽  
Sandrine Muller

In the past decades, neuroscientists and clinicians have collected a considerable amount of data and drastically increased our knowledge about the mapping of language in the brain. The emerging picture from the accumulated knowledge is that there are complex and combinatorial relationships between language functions and anatomical brain regions. Understanding the underlying principles of this complex mapping is of paramount importance for the identification of the brain signature of language and Neuro-Clinical signatures that explain language impairments and predict language recovery after stroke. We review recent attempts to addresses this question of language-brain mapping. We introduce the different concepts of mapping (from diffeomorphic one-to-one mapping to many-to-many mapping). We build those different forms of mapping to derive a theoretical framework where the current principles of brain architectures including redundancy, degeneracy, pluri-potentiality and bow-tie network are described.


2020 ◽  
Vol 15 ◽  
Author(s):  
Geeta Aggarwal ◽  
Manju Nagpal ◽  
Ameya Sharma ◽  
Vivek Puri ◽  
Gitika Arora Dhingra

Background: Biopharmaceuticals such as Biologic medicinal products have been in clinical use over the past three decades and have benefited towards the therapy of degenerative and critical metabolic diseases. It is forecasted that market of biologics will be going to increase at a rate of 20% per year, and by 2025, more than ˃ 50% of new drug approvals may be biological products. The increasing utilization of the biologics necessitates for cost control, especially for innovators products that have enjoyed a lengthy period of exclusive use. As the first wave of biopharmaceuticals is expired or set to expire, it has led to various opportunities for the expansion of bio-similars i.e. copied versions of original biologics with same biologic activity. Development of biosimilars is expected to promote market competition, meet worldwide demand, sustain the healthcare systems and maintain the incentives for innovation. Methods: Appraisal of published articles from peer reviewed journals, PubMed literature, latest news and guidelines from European Medicine Agency, US Food Drug Administration (FDA) and India are used to identify data for review. Results: Main insight into the quality requirements concerning biologics, current status of regulation of biosimilars and upcoming challenges lying ahead for the upgrading of marketing authorization of bio-similars has been incorporated. Compiled literature on therapeutic status, regulatory guidelines and the emerging trends and opportunities of biosimilars has been thoroughly stated. Conclusion: Updates on biosimilars will support to investigate the possible impact of bio-similars on healthcare market.


Author(s):  
Sascha R. A. Alles ◽  
Anne-Marie Malfait ◽  
Richard J. Miller

Pain is not a simple phenomenon and, beyond its conscious perception, involves circuitry that allows the brain to provide an affective context for nociception, which can influence mood and memory. In the past decade, neurobiological techniques have been developed that allow investigators to elucidate the importance of particular groups of neurons in different aspects of the pain response, something that may have important translational implications for the development of novel therapies. Chemo- and optogenetics represent two of the most important technical advances of recent times for gaining understanding of physiological circuitry underlying complex behaviors. The use of these techniques for teasing out the role of neurons and glia in nociceptive pathways is a rapidly growing area of research. The major findings of studies focused on understanding circuitry involved in different aspects of nociception and pain are highlighted in this article. In addition, attention is drawn to the possibility of modification of chemo- and optogenetic techniques for use as potential therapies for treatment of chronic pain disorders in human patients.


Biomolecules ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 142
Author(s):  
Mariella Cuomo ◽  
Luca Borrelli ◽  
Rosa Della Monica ◽  
Lorena Coretti ◽  
Giulia De Riso ◽  
...  

The bidirectional microbiota–gut–brain axis has raised increasing interest over the past years in the context of health and disease, but there is a lack of information on molecular mechanisms underlying this connection. We hypothesized that change in microbiota composition may affect brain epigenetics leading to long-lasting effects on specific brain gene regulation. To test this hypothesis, we used Zebrafish (Danio Rerio) as a model system. As previously shown, treatment with high doses of probiotics can modulate behavior in Zebrafish, causing significant changes in the expression of some brain-relevant genes, such as BDNF and Tph1A. Using an ultra-deep targeted analysis, we investigated the methylation state of the BDNF and Tph1A promoter region in the brain and gut of probiotic-treated and untreated Zebrafishes. Thanks to the high resolution power of our analysis, we evaluated cell-to-cell methylation differences. At this resolution level, we found slight DNA methylation changes in probiotic-treated samples, likely related to a subgroup of brain and gut cells, and that specific DNA methylation signatures significantly correlated with specific behavioral scores.


Author(s):  
Richard J. Simonson ◽  
Joseph R. Keebler ◽  
Mathew Lessmiller ◽  
Tyson Richards ◽  
John C. Lee

As cyber-attacks and their subsequent responses have become more frequent and complex over the past decade, research into the performance and effectiveness of cybersecurity teams has gained an immense amount of traction. However, investigation of teamwork in this domain is lacking due to the exclusion of known team competencies and a lack of reliance on team science. This paper serves to provide insight into the benefit that can be gained from utilizing the extant teamwork literature to improve teams’ research and applications in the domain of cyber-security.


2021 ◽  
Vol 10 (11) ◽  
pp. 2358
Author(s):  
Maria Grazia Giovannini ◽  
Daniele Lana ◽  
Chiara Traini ◽  
Maria Giuliana Vannucchi

The microbiota–gut system can be thought of as a single unit that interacts with the brain via the “two-way” microbiota–gut–brain axis. Through this axis, a constant interplay mediated by the several products originating from the microbiota guarantees the physiological development and shaping of the gut and the brain. In the present review will be described the modalities through which the microbiota and gut control each other, and the main microbiota products conditioning both local and brain homeostasis. Much evidence has accumulated over the past decade in favor of a significant association between dysbiosis, neuroinflammation and neurodegeneration. Presently, the pathogenetic mechanisms triggered by molecules produced by the altered microbiota, also responsible for the onset and evolution of Alzheimer disease, will be described. Our attention will be focused on the role of astrocytes and microglia. Numerous studies have progressively demonstrated how these glial cells are important to ensure an adequate environment for neuronal activity in healthy conditions. Furthermore, it is becoming evident how both cell types can mediate the onset of neuroinflammation and lead to neurodegeneration when subjected to pathological stimuli. Based on this information, the role of the major microbiota products in shifting the activation profiles of astrocytes and microglia from a healthy to a diseased state will be discussed, focusing on Alzheimer disease pathogenesis.


Sign in / Sign up

Export Citation Format

Share Document