Assessment of efficiency of energy optimal driving mode for system of «pilot-free» movement of electric multiple units on the Moscow Central Ring

2020 ◽  
pp. 89-93
Author(s):  
Vasiliy Titovich Cheremisin ◽  
◽  
Mikhail Mikhaylovich Nikiforov ◽  
Alexander Sergeevich Vilgelm ◽  
Sergey Yuryevich Ushakov ◽  
...  

According to results of experimental studies within the framework of the Moscow Central Ring the authors revealed the best trips of drivers in terms of energy efficiency of train traction. The analysis of these trips allowed determining riding techniques that provide energy saving: smooth acceleration and braking at unconditional performance of the given train schedule. On the basis of the developed simulation model of the Moscow Central Ring it is established that the use of energy efficient techniques of riding with the on time train performance can reduce the power consumption on train traction by 13.3 %.

Author(s):  
Viacheslav Martynov

To calculate the optimal parameters of outbuildings, a mathematical model and method for optimizing the shape and resistance of heat transfer for opaque and transparent structures with a certain constant number of faces, building volume and amount of insulation to minimize the thermal balance of enclosing structures with the environment during the heating period In the course of calculations the geometrical parameters of translucent, opaque structures in the heat-insulating shell of buildings are determined taking into account heat losses, heat influx from solar radiation by the criterion of ensuring minimum heat losses through enclosing structures, rational parameters (buildings) The given technique and mathematical models should be used in the future in the design of energy efficient buildings in the reconstruction and thermal modernization of buildings. This will increase their energy efficiency and, accordingly, the energy efficiency class of buildings. For the research faceted attached building in the form of a triangular pyramid, the reduction in heat loss was 14.82 percent only due to the optimization of the shape and redistribution of the insulation. Similar results were obtained for other initial forms. For the first time, a computerized method was proposed, an algorithm and application package Optimparam for multiparameter shape optimization and insulation of translucent and opaque structures for outbuildings with a given number of arbitrarily arranged faces were developed.


Author(s):  
Ayodeji A. Ajani ◽  
◽  
Vitalice K. Oduol ◽  
Zachaeus K. Adeyemo ◽  
Ebude C. Awasume

5G Ultra-Dense Networks (UDNs) will involve massive deployment of small cells which in turn form complex backhaul network. This backhaul network must be energy efficient for the 5G UDN network to be green. V-band and E-band mmWave technologies are among the wireless backhaul solutions tipped for 5G UDN. In this paper, we have compared the performance of the two backhaul solutions to determine which is more energy efficient for 5G UDN. We first formulated the problem to minimize power, then proposed an algorithm to solve the problem. This was then simulated using Network simulator 3.The first scenario made use of V-band mmWave while thesecond was E-band mmWave. The performance metricsused were power consumption and energy efficiency againstthe normalized hourly traffic profile. The performances ofthe two solutions were compared. The results revealed thatE-band mmWave outperformed V-band mmWave inbackhauling traffic in 5G UDN. It can be concluded that E-band green backhaul solution is recommended over V-bandmmWave for 5G UDN.


2020 ◽  
Author(s):  
Aleksandr Vititnev ◽  
Yuri Alashkevich ◽  
Natalia Chistova

This paper presents the results of experimental studies of the process of grinding fiber semi-finished products, the specific power consumption for its implementation with different refining disks in the production of fiberboard.


Sensors ◽  
2020 ◽  
Vol 20 (6) ◽  
pp. 1587 ◽  
Author(s):  
Bartosz Bossy ◽  
Pawel Kryszkiewicz ◽  
Hanna Bogucka

In this paper, a new perspective of using flexible, brain-inspired, analog and digital wireless transmission in massive future networks, is presented. Inspired by the nervous impulses transmission mechanisms in the human brain which is highly energy efficient, we consider flexible, wireless analog and digital transmission on very short distances approached from the energy efficiency point of view. The energy efficiency metric is compared for the available transmission modes, taking the circuit power consumption model into account. In order to compare the considered systems, we assume that the transmitted data comes from analog sensors. In the case of the digital transmission scheme, the decoded data are converted back to analog form at the receiving side. Moreover, different power consumption models from the literature and the digital transmission schemes with different performance are analyzed in order to examine if, for some applications and for some channel conditions, the analog transmission can be the energy-efficient alternative of digital communication. The simulation results show that there exist some cases when the analog or simplified digital communication is more energy efficient than digital transmission with QAM modulation.


2013 ◽  
Vol 14 (01) ◽  
pp. 1350001 ◽  
Author(s):  
TSENG-YI CHEN ◽  
HSIN-WEN WEI ◽  
CHE-RUNG LEE ◽  
FU-NAN HUANG ◽  
TASN-SHENG HSU ◽  
...  

Over the past decade, energy efficiency has consistently been a critical research topic in the field of wireless sensor networks. In wireless networks, signal interference often leads to power waste in a sensor node. Several SINR-based routing algorithms designed for energy efficiency or interference avoidance had been proposed. However, they are either too complex to be useful in practices or may slow in routing computation speed. In this paper, two energy efficient geographic routing algorithms (EEGRA) for wireless sensor network are proposed to address the power consumption issue while considering the routing computation speed. The first algorithm take the value of interference into the routing cost function, and uses it in the routing decision. The second algorithm transforms the problem into a constrained optimization problem, and solves it by searching the optimal discretized interference level. We adopt four geographic routing algorithms: GOAFR+, Face Routing, GPSR, and RandHT, in EEGRA algorithms and compare them with three other routing methods in terms of power consumption and computation cost for the grid and irregular sensor topologies. The experimental result shows that the EEGRA algorithms reduce energy consumption by 30–50% comparing to geographic routing methods. In addition, the time complexity of EEGRA algorithms is similar to the geographic greedy routing methods, which is much faster than the optimal SINR-based algorithm.


2021 ◽  
Vol 11 (12) ◽  
pp. 3123-3132
Author(s):  
M. Mailsamy ◽  
V. Rukkumani ◽  
K. Srinivasan

There have been significant advances in sensors and device structures in the medical industry, particularly in implanted medical devices. Increasingly complex electronic circuitry may now be implanted in the human body thanks to compact, high-energy batteries and hermetic packaging. These gadgets must adhere to strict power consumption guidelines due to the battery recharging schedule. Designing energy-efficient circuits and systems becomes increasingly important as a result of this fact. Adiabatic circuits provide a hopeful alternative for traditional circuitry in case of low energy design. Because of power-clock phases synchronization complexity, designing and functionally verifying presenting 4-phase adiabatic circuitry takes longer. Accordingly, multiple clock generators are used typically and can reveal enhanced consumption of energy in the network of clock distribution. Furthermore, they are not suitable for designing in high-speed because of their clock skew management and high complexity issues. In this paper, TMEL (True multi-phase energy recovering logic), the first energyrecovering/adiabatic logic family is presented for biomedical applications, which functions using the scheme multiple-phase sinusoidal clocking. Moreover, a system of SCAL, a source-coupled variation with TMEL having enhanced energy efficiency and supply voltage scalability, is introduced. A novel true multi-phase Approach and Source-coupled adiabatic logic for energy effective communication system is proposed. The adiabatic logic is employed for both write and read side operation. The CMOS inverter is integrated with TMEL cascades, which in turn reduces leakage loss. In SCAL, the optimal performance at any operating circumstance is attained byan adjustable current source in each gate. SCAL, and TMEL, are capable of outperforming existing adiabatic logic families concerning operating speed and energy efficiency. The performance analysis was carried and simulated through 45 nm CMOS inverter in terms of leakage power, delay, and power consumption. In particular, for the clock rates that range from 10 MHz to 200 MHz, the proposed SCAL was more energy-efficient and less dissipative on comparing their pipelined or purely combinational CMOS counterparts. In biomedical equipment, the system may be included into the low-power design since it is energy efficient and very robust. Improvements in VLSI technology, such as increased dynamic range, low-voltage EEPROMs (electrically eraseable programmable ROMs), and specific sensor techniques, are also expected to contribute to advancements in implanted medical devices in the near future.


Author(s):  
O. DEMIANCHUK ◽  
A. BABARYKINA

Purpose. Improving approaches and methods of calculation and design of energy-efficient sorting slides of railway stations, taking into account the mechanization of their braking positions based on the use of modern car moderators, including energy efficient structures. Methodology. The research was performed using the methods of the theory of bitter calculations in combination with the tools of mathematical statistics and probability theory. The assessment of the possible economic effect was carried out taking into account the technical and economic calculations on the criterion of the given savings of annual costs. Results. An estimate of the predicted value of the speed of the very good runner at the entrance to the brake positions when calculating their needs. An adaptive approach to the calculation of the required power of the 1st and 2nd brake positions on the descent part of the sorting slides is proposed. The condition of technological reliability and "survivability" of the system of control of speeds of movement of couplings at rolling down from a sorting hill is checked taking into account action of probabilistic factors. The economic effect of reducing the need for car decelerators for the braking positions of the slides, as well as energy efficiency of sorting complexes. Practical value. The obtained important scientific and practical results to substantiate the reduction of energy consumption and increase the energy efficiency of sorting stations can be used to develop new projects and to survey the parameters of existing sorting complexes, including non-mechanized slides.


2018 ◽  
pp. 113-119
Author(s):  
Gennady Ya. Vagin ◽  
Eugene B. Solntsev ◽  
Oleg Yu. Malafeev

The article analyses critera applying to the choice of energy efficient high quality light sources and luminaires, which are used in Russian domestic and international practice. It is found that national standards GOST P 54993–2012 and GOST P 54992– 2012 contain outdated criteria for determining indices and classes of energy efficiency of light sources and luminaires. They are taken from the 1998 EU Directive #98/11/EU “Electric lamps”, in which LED light sources and discharge lamps of high intensity were not included. A new Regulation of the European Union #874/2012/EU on energy labelling of electric lamps and luminaires, in which these light sources are taken into consideration, contains a new technique of determining classes of energy efficiency and new, higher classes are added. The article has carried out a comparison of calculations of the energy efficiency classes in accordance with GOST P 54993 and with Regulation #874/2012/EU, and it is found out that a calculation using GOST P 54993 gives underrated energy efficiency classes. This can lead to interdiction of export for certain light sources and luminaires, can discredit Russian domestic manufacturer light sources and does not correspond to the rules of the World Trade Organization (WTO).


Author(s):  
A. Radhika ◽  
D. Haritha

Wireless Sensor Networks, have witnessed significant amount of improvement in research across various areas like Routing, Security, Localization, Deployment and above all Energy Efficiency. Congestion is a problem of  importance in resource constrained Wireless Sensor Networks, especially for large networks, where the traffic loads exceed the available capacity of the resources . Sensor nodes are prone to failure and the misbehaviour of these faulty nodes creates further congestion. The resulting effect is a degradation in network performance, additional computation and increased energy consumption, which in turn decreases network lifetime. Hence, the data packet routing algorithm should consider congestion as one of the parameters, in addition to the role of the faulty nodes and not merely energy efficient protocols .Nowadays, the main central point of attraction is the concept of Swarm Intelligence based techniques integration in WSN.  Swarm Intelligence based Computational Swarm Intelligence Techniques have improvised WSN in terms of efficiency, Performance, robustness and scalability. The main objective of this research paper is to propose congestion aware , energy efficient, routing approach that utilizes Ant Colony Optimization, in which faulty nodes are isolated by means of the concept of trust further we compare the performance of various existing routing protocols like AODV, DSDV and DSR routing protocols, ACO Based Routing Protocol  with Trust Based Congestion aware ACO Based Routing in terms of End to End Delay, Packet Delivery Rate, Routing Overhead, Throughput and Energy Efficiency. Simulation based results and data analysis shows that overall TBC-ACO is 150% more efficient in terms of overall performance as compared to other existing routing protocols for Wireless Sensor Networks.


2013 ◽  
Vol 60 (2) ◽  
pp. 185-197 ◽  
Author(s):  
Paweł Sulikowski ◽  
Ryszard Maronski

The problem of the optimal driving technique during the fuel economy competition is reconsidered. The vehicle is regarded as a particle moving on a trace with a variable slope angle. The fuel consumption is minimized as the vehicle covers the given distance in a given time. It is assumed that the run consists of two recurrent phases: acceleration with a full available engine power and coasting down with the engine turned off. The most fuel-efficient technique for shifting gears during acceleration is found. The decision variables are: the vehicle velocities at which the gears should be shifted, on the one hand, and the vehicle velocities when the engine should be turned on and off, on the other hand. For the data of students’ vehicle representing the Faculty of Power and Aeronautical Engineering it has been found that such driving strategy is more effective in comparison with a constant speed strategy with the engine partly throttled, as well as a strategy resulting from optimal control theory when the engine is still active.


Sign in / Sign up

Export Citation Format

Share Document