scholarly journals Effect of storage time and chlorhexidine addition on the mechanical properties of glass ionomer cements

2017 ◽  
Vol 16 ◽  
pp. 1-9
Author(s):  
Juliana de Carvalho Machado ◽  
Cristiane Duque ◽  
Josânia Pitzer de Oliveira ◽  
Angela Scarparo Caldo-Teixeira

Aims: To evaluate the effect of the chlorhexidine (CHX) incorporation and the storage time on the mechanical properties of glass ionomer cements (GICs). Methods: The following GICs were evaluated: Ketac Molar Easymix (KM), Vidrion R (VR) and Vitromolar (VM), containing or not CHX.  GIC liquid was modified by adding 1.25 % CHX digluconate and then manipulated with the power and placed into the stainless steel cylindrical or bar-shaped molds. GICs specimens were stored into water for 1, 7 and 28 days. After these periods, specimens were submitted to flexural, diametral tensile and compressive strength tests, according to ISO standards. Data from mechanical tests were statistically analyzed using 2-way ANOVA and Tukey tests. Results: Overall, the storage time did not influence any of the mechanical properties of the GICs tested. In contrast, the inclusion of CHX reduced significantly these properties for all GICs tested. KM presented the highest values of compressive strength for all storage times. KM + 1.25% CHX had lower compressive strength results than KM, however, it showed similar results when compared to another GICs without CHX. Conclusions: The presence of chlorhexidine, independent of the storage time, interfered on the mechanical characteristics of GIC.

2012 ◽  
Vol 17 (6) ◽  
pp. 154-159 ◽  
Author(s):  
Marcel M. Farret ◽  
Eduardo Martinelli de Lima ◽  
Eduardo Gonçalves Mota ◽  
Hugo Mitsuo S. Oshima ◽  
Gabriela Maguilnik ◽  
...  

OBJECTIVE: To evaluate the mechanical properties of three glass ionomers cements (GICs) used for band cementation in Orthodontics. METHODS: Two conventional glass ionomers (Ketac Cem Easy mix/3M-ESPE and Meron/Voco) and one resin modified glass ionomer (Multi-cure Glass ionomer/3M-Unitek) were selected. For the compressive strength and diametral tensile strength tests, 12 specimens were made of each material. For the microhardness test 15 specimens were made of each material and for the shear bond strength tests 45 bovine permanent incisors were used mounted in a self-cure acrylic resin. Then, band segments with a welded bracket were cemented on the buccal surface of the crowns. For the mechanical tests of compressive and diametral tensile strength and shear bond strength a universal testing machine was used with a crosshead speed of 1,0 mm/min and for the Vickers microhardness analysis tests a Microdurometer was used with 200 g of load during 15 seconds. The results were submitted to statistical analysis through ANOVA complemented by Tukey's test at a significance level of 5%. RESULTS: The results shown that the Multi-Cure Glass Ionomer presented higher diametral tensile strength (p < 0.01) and compressive strength greater than conventional GICs (p = 0.08). Moreover, Ketac Cem showed significant less microhardness (p < 0.01). CONCLUSION: The resin-modified glass ionomer cement showed high mechanical properties, compared to the conventional glass ionomer cements, which had few differences between them.


Materials ◽  
2020 ◽  
Vol 13 (16) ◽  
pp. 3542
Author(s):  
Maja Bilić-Prcić ◽  
Valentina Brzović Rajić ◽  
Ana Ivanišević ◽  
Ana Pilipović ◽  
Sevil Gurgan ◽  
...  

The purpose of this study was to evaluate the effects of the incorporation of hydroxyapatite (HA) derived from cuttlefish bone on the mechanical properties of glass ionomer cements (GIC). Fuji II LC and Fuji IX GP Extra (GC Corporation, Tokyo, Japan) were used in the study. There were four groups (n = 11–18) for each material: a group without the addition of HA particles and three groups modified by incorporation of 2, 5, and 10 wt% HA. The tests were performed on a universal testing machine (Shimadzu, Duisburg, Germany) and descriptive statistics, two-way analysis of variance (ANOVA) for the comparison of three mechanical properties, and one-way ANOVA for the comparison of different concentrations for each material were performed. Regarding the Fuji IX groups, compressive strength (CS) and flexural strength (FS) were highest in the group without HA particles added. The differences in CS between the Fuji IX group without HA particles and the Fuji IX groups with 2 wt% HA and 10 wt% HA were significant. The Fuji II 5 wt% HA group exhibited higher diametral tensile strength (DTS) and CS than other Fuji II groups, but not significantly. The Fuji II group, modified with 10 wt% HA, exhibited significantly higher FS than the Fuji II group without HA particles (p < 0.05). Porous HA incorporated into the Fuji IX groups had a significant impact on mechanical properties only in the Fuji IX 5 wt% HA group. Fuji II groups modified with 10 wt% HA showed the most favorable results with respect to FS.


This paper aimed to investigate the mechanical characteristics of HSC of M60 concrete adding 25% of fly ash to cement and sand and percentage variations of silica fumes 0%,5% and 10% to cement with varying sizes of 10mm,6mm,2mm and powder of granite aggregate with w/c of 0.32. Specimens are tested for compressive strength using 10cm X 10cmX10cm cubes for 7,14,28 days flexural strength was determined by using 10cmX10cmX50cm beam specimens at 28 days and 15cm diameter and 30cm height cylinder specimens at 28 days using super plasticizers of conplast 430 as a water reducing agent. In this paper the experimental set up is made to study the mechanical properties of HSC with and without coarse aggregate with varying sizes as 10mm, 6mm, 2mm and powder. Similarly, the effect of silica fume on HSC by varying its percentages as 0%, 5% and 10% in the mix studied. For all mixes 25% extra fly ash has been added for cement and sand.


2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Kun Zhang ◽  
Bairu Lu ◽  
Yihong Wang ◽  
Zhijun Lei ◽  
Zhanshen Yang

According to the latest UN statistics, more than 2 billion people in the world still live in various forms of earthen buildings, including some in China. The variety of earth-based constructional materials is significant among different regions, with each region influencing the selection of local earth construction materials. In this study, earth materials from four regions of China were collected and sorted, with 10 samples from each source, and cube compressive strength tests were performed to analyze the composition and mechanical properties of the four materials, including northeast black earth, southeast red earth, northwest loess, and Xinjiang yellow sand earth. The results showed that significant differences existed in the composition of earth-based constructional materials from different regions, which have influence on the materials’ compressive strength. The order from large to small of compressive strengths was loess, black earth, yellow sandy earth, and red earth. Material load-displacement curves were influenced significantly by the plasticity index, but the overall failure processes of the various samples were basically the same.


2019 ◽  
Vol 60 (2) ◽  
pp. 74-83
Author(s):  
J. Sarfo-Ansah ◽  
K. A. Boakye ◽  
E. Atiemo ◽  
R. Appiah

A Quality control scheme was developed for a 200 ton per day commercial pozzolana plant. The scheme was evaluated for the first 34 days of production. Statistical Process Control tech­niques were specifically applied to the mechanical properties of setting times and compressive strength. Results obtained showed that pozzolana samples tested were chemically suitable with total SiO2, Al2O3 and Fe2O3 content ≥ 70%. Mechanical tests performed were mostly under control and when out-of-control, they gave valuable indication to plant malfunction or operator errors which were promptly corrected. The results of mechanical properties tested against the three major brands of cement on the Ghanaian market showed that pozzolana gave highest compressive strengths with Dangote CEM I 42.5R ranging between 21.3 MPa - 36.3 MPa at 7 days and 33.8 MPa - 45.1 MPa at 28 days whilst lowest compressive strengths were obtained with Ghacem CEM II B-L 32.5R cement ranging between 16.3 MPa – 23.6 MPa at 7 days and 23.3 MPa – 30.7 MPa at 28 days. Compressive strengths obtained with Diamond CEM II B-L 42.5N cement were average. A mean compressive strength for all brands of ce­ment of 25.2 MPa and 33.6 MPa at 7 days and 28 days respectively were obtained. Keywords: Pozzolana cement, statistical process control, Shewhart chart, compressive strength, setting time


2020 ◽  
Vol 96 ◽  
pp. 103332
Author(s):  
Jingwen Chen ◽  
Qi Zhao ◽  
Jianmin Peng ◽  
Xin Yang ◽  
Dongsheng Yu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document