Synthesis and characterization of a new conjugated polymer containing bithiazole group and its thermal decomposition kinetics
A new conjugated polymer containing a bithiazole group is prepared by the polycondensation of 2,2'-diamino-4,4'-bithiazole and terephthaldialdehyde in the presence of glacial acetic acid. The kinetics of thermal degradation of the new polymer are investigated by thermogravimetric analysis at different heating rates. The temperature corresponding to the maximum rate loss shifts to higher temperatures with increasing heating rate. The thermal decomposition activation energies of the conjugated polymer in a conversion range of 3–15 % are 288.4 and 281.1 kJ/mol by the Flynn–Wall–Ozawa and Kissinger methods, respectively. The Horowitz–Metzger method shows that the thermodegradation mechanism of the conjugated polymer proceeds over a three-dimensional diffusion type deceleration D3 mechanism. The optimum heating rate is 20 ºC/min.