Classification and analysis of measuring transducers of intensity (induction) of alternating magnetic fields
The current state of technology is characterized by the mass use of electricity, the use of various electrical, electronic and radio devices. This causes expansion of magnetic measurements and the need to develop new highly sensitive measuring equipment for a wide range of frequencies. One of its main elements, that largely determines the accuracy, frequency and dynamic ranges, are the primary measuring sensors of strength (induction) of alternating magnetic fields. Many works have been devoted to the analysis and development of various sensors of strength (induction) of magnetic fields. At the same time, it can be noted the lack of a systematic approach to the measurement of alternating magnetic fields. The problem of the general classification of methods of measurement of alternating magnetic fields and, accordingly, primary measuring sensors of strength (induction) of alternating magnetic fields is not solved. In most cases, separate issues of measuring alternating magnetic fields and certain types of sensors are considered. That does not allow obtaining a holistic picture in this area and make the right choice of direction for solving assigned tasks. The comprehensive analysis of methods of measuring alternating magnetic fields was carried out in this work. Based on it, the classification of primary measuring sensors of strength (induction) of alternating magnetic fields, on the physical principles of transformation was proposed. Accordingly, the available measuring sensors of alternating magnetic fields following to the group of used physical phenomena can be divided into: magnetomechanical, induction, galvanomagnetic, quantum, magneto-optical and photomagnetic. Depending on the characteristics of each of these phenomena, separate measurement methods and types of measuring sensors were highlighted. The current state of development of each of the types of measuring sensors of strength of alternating magnetic fields was analyzed, their advantages and disadvantages were determined, the limits of dynamic and frequency ranges, the maximum values of errors were outlined. The obtained results allow to significantly simplify and reduce the time of choosing the necessary method of strength (induction) of alternating magnetic fields measuring and to choose the necessary type of measuring sensor to effectively solve the tasks.