scholarly journals On Partial Sums of Analytic Univalent Functions

Author(s):  
Mohammad Mehdi Shabani ◽  
Saeed Hashemi Sababe

Partial sums of analytic univalent functions and partial sums of starlike have been investigated extensively by several researchers. In this paper, we investigate a partial sums of convex harmonic functions that are univalent and sense preserving in the open unit disk.

2007 ◽  
Vol 2007 ◽  
pp. 1-11
Author(s):  
Jay M. Jahangiri ◽  
Herb Silverman ◽  
Evelyn M. Silvia

Complex-valued harmonic functions that are univalent and sense-preserving in the open unit disk can be written in the formf=h+g¯, wherehandgare analytic in the open unit disk. The functionshandgare called the analytic and coanalytic parts off, respectively. In this paper, we construct certain planar harmonic maps either by varying the coanalytic parts of harmonic functions that are known to be harmonic starlike or by adjoining analytic univalent functions with coanalytic parts that are related or derived from the analytic parts.


Axioms ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 27
Author(s):  
Hari Mohan Srivastava ◽  
Ahmad Motamednezhad ◽  
Safa Salehian

In this paper, we introduce a new comprehensive subclass ΣB(λ,μ,β) of meromorphic bi-univalent functions in the open unit disk U. We also find the upper bounds for the initial Taylor-Maclaurin coefficients |b0|, |b1| and |b2| for functions in this comprehensive subclass. Moreover, we obtain estimates for the general coefficients |bn|(n≧1) for functions in the subclass ΣB(λ,μ,β) by making use of the Faber polynomial expansion method. The results presented in this paper would generalize and improve several recent works on the subject.


1997 ◽  
Vol 10 (2) ◽  
pp. 197-202
Author(s):  
Massoud Jahangiri

We consider the partial sums of certain hypergeometric functions and establish conditions imposed on the locations of zeros of those polynomials in order to be close-to-convex in the open unit disk.


2001 ◽  
Vol 25 (12) ◽  
pp. 771-775 ◽  
Author(s):  
Shigeyoshi Owa

The object of the present paper is to consider the starlikeness and convexity of partial sums of certain analytic functions in the open unit disk.


2019 ◽  
Vol 12 (02) ◽  
pp. 1950017
Author(s):  
H. Orhan ◽  
N. Magesh ◽  
V. K. Balaji

In this work, we obtain an upper bound estimate for the second Hankel determinant of a subclass [Formula: see text] of analytic bi-univalent function class [Formula: see text] which is associated with Chebyshev polynomials in the open unit disk.


Author(s):  
Ismaila O. Ibrahim ◽  
Timilehin G. Shaba ◽  
Amol B. Patil

In the present investigation, we introduce the subclasses $\Lambda_{\Sigma_m}^{\rightthreetimes}(\sigma,\phi,\upsilon)$ and $\Lambda_{\Sigma_m}^{\rightthreetimes}(\sigma,\gamma,\upsilon)$ of $m$-fold symmetric bi-univalent function class $\Sigma_m$, which are associated with the Sakaguchi type of functions and defined in the open unit disk. Further, we obtain estimates on the initial coefficients $b_{m+1}$ and $b_{2m+1}$ for the functions of these subclasses and find out connections with some of the familiar classes.


2016 ◽  
Vol 32 (1) ◽  
pp. 123-129
Author(s):  
VIRGIL PESCAR ◽  
◽  
CONSTANTIN LUCIAN ALDEA ◽  
◽  

In this paper we consider an integral operator for analytic functions in the open unit disk and we derive the order of convexity for this integral operator, on certain classes of univalent functions.


Author(s):  
Timilehin G. Shaba ◽  
Amol B. Patil

In the present investigation, we introduce the subclasses $\varLambda_{\Sigma}^{m}(\eta,\leftthreetimes,\phi)$ and $\varLambda_{\Sigma}^{m}(\eta,\leftthreetimes,\delta)$ of \textit{m}-fold symmetric bi-univalent function class $\Sigma_m$, which are associated with the pseudo-starlike functions and defined in the open unit disk $\mathbb{U}$. Moreover, we obtain estimates on the initial coefficients $|b_{m+1}|$ and $|b_{2m+1}|$ for the functions belong to these subclasses and identified correlations with some of the earlier known classes.


2017 ◽  
Vol 84 (1-2) ◽  
pp. 73
Author(s):  
Amol B. Patil ◽  
Uday H. Naik

In the present investigation we introduce two subclasses Ν<sub>Σ</sub><sup>δ</sup>,<sup>μ</sup> [η, α, λ] and Ν<sub>Σ</sub><sup>δ</sup>,<sup>μ</sup> (η, β, λ) of the function class Σ of bi-univalent functions defined in the open unit disk. These subclasses are defined by using the Al-Oboudi differential operator, which is the generalized Salagean's differential operator. Also we find estimates on initial coeffcients |a<sub>2</sub>| and |a<sub>3</sub>| for the functions in these subclasses and consider some related subclasses in connection with these subclasses.


2015 ◽  
Vol 65 (3) ◽  
Author(s):  
S. P. Goyal ◽  
Rakesh Kumar

AbstractIn the present paper, we obtain the estimates on initial coefficients of normalized analytic function f in the open unit disk with f and its inverse g = f


Sign in / Sign up

Export Citation Format

Share Document