Using Lorentz Violation for Early Universe GW Generation Due to Black Hole Destruction in the Early Universe as by Freeze

Author(s):  
Andrew W Beckwith

We are using information from a paper deriving a Lorentz-violating energy-momentum relation entailing an exact mo_mentum cutof as stated by G. Salesi . Salesi in his work allegedly defines Pre Planckian physics, whereas we restrict our given application to GW generation and DE formation in the first 10^-39s to 10^-33s or so seconds in the early universe. This procedure is inacted due to an earlier work whereas referees exhibited puzzlement as to the physical mechanism for release of Gravitons in the very early universe. The calculation is meant to be complementary to work done in the Book “Dark Energy” by M. Li, X-D. Li, and Y. Wang, and also a calculation for Black hole destruction as outlined by Karen Freeze, et. al. The GW generation will be when there is sufficient early universe density so as to break apart Relic Black holes but we claim that this destruction is directly linked to a Lorentz violating energy-momentum G. Salesi derived, which we adopt, with a mass m added in the G. Salesi energy momentum results proportional to a tiny graviton mass, times the number of gravitons in the first 10^-43 seconds

2020 ◽  
Vol 15 (S359) ◽  
pp. 238-242
Author(s):  
Mar Mezcua

AbstractDetecting the seed black holes from which quasars formed is extremely challenging; however, those seeds that did not grow into supermassive should be found as intermediate-mass black holes (IMBHs) of 100 – 105 M⊙ in local dwarf galaxies. The use of deep multiwavelength surveys has revealed that a population of actively accreting IMBHs (low-mass AGN) exists in dwarf galaxies at least out to z ˜3. The black hole occupation fraction of these galaxies suggests that the early Universe seed black holes formed from direct collapse of gas, which is reinforced by the possible flattening of the black hole-galaxy scaling relations at the low-mass end. This scenario is however challenged by the finding that AGN feedback can have a strong impact on dwarf galaxies, which implies that low-mass AGN in dwarf galaxies might not be the untouched relics of the early seed black holes. This has important implications for seed black hole formation models.


2019 ◽  
Vol 487 (3) ◽  
pp. 3650-3663 ◽  
Author(s):  
J K Hoormann ◽  
P Martini ◽  
T M Davis ◽  
A King ◽  
C Lidman ◽  
...  

ABSTRACT Black hole mass measurements outside the local Universe are critically important to derive the growth of supermassive black holes over cosmic time, and to study the interplay between black hole growth and galaxy evolution. In this paper, we present two measurements of supermassive black hole masses from reverberation mapping (RM) of the broad C iv emission line. These measurements are based on multiyear photometry and spectroscopy from the Dark Energy Survey Supernova Program (DES-SN) and the Australian Dark Energy Survey (OzDES), which together constitute the OzDES RM Program. The observed reverberation lag between the DES continuum photometry and the OzDES emission line fluxes is measured to be $358^{+126}_{-123}$ and $343^{+58}_{-84}$ d for two quasars at redshifts of 1.905 and 2.593, respectively. The corresponding masses of the two supermassive black holes are 4.4 × 109 and 3.3 × 109 M⊙, which are among the highest redshift and highest mass black holes measured to date with RM studies. We use these new measurements to better determine the C iv radius−luminosity relationship for high-luminosity quasars, which is fundamental to many quasar black hole mass estimates and demographic studies.


2019 ◽  
Vol 35 (09) ◽  
pp. 2050059
Author(s):  
Peter K. F. Kuhfittig ◽  
Vance D. Gladney

Noncommutative geometry, an offshoot of string theory, replaces point-like objects by smeared objects. The resulting uncertainty may cause a black hole to be observationally indistinguishable from a traversable wormhole, while the latter, in turn, may become observationally indistinguishable from a gravastar. The same noncommutative-geometry background allows the theoretical construction of thin-shell wormholes from gravastars and may even serve as a model for dark energy.


2021 ◽  
pp. 79-88
Author(s):  
Gianfranco Bertone

I discuss here black holes, extreme astronomical objects that swallow all forms of matter and radiation surrounding them, and leave behind, as physicist John A. Wheeler said, only their ‘gravitational aura’. These endlessly fascinating objects are the gates where gravity meets quantum physics. Since the pioneering work of scientists like S. Hawking, black holes have become ‘theoretical laboratories’ to explore new physics theories. I discuss how the discovery of gravitational waves from black holes, and the first image of a black hole revealed in 2019, have transformed the study of black holes, and may soon lead to new ground-breaking discoveries. The Universe will disappear. Slowly, it will grow dimmer and dimmer, until it disappears completely.


2010 ◽  
Vol 19 (08n10) ◽  
pp. 1249-1252
Author(s):  
D. C. GUARIENTO ◽  
J. E. HORVATH

We study the evolution of a primordial black hole (PBH) taking into account the presence of dark energy modeled by a general perfect fluid. In the specific case of a stationary non-self-gravitating test fluid, the competition between radiation accretion, Hawking evaporation and the accretion of such a fluid has been studied in detail. The evaporation of PBHs is quite modified at late times by these effects. We address further generalizations of this scenario to consider other types of fluids, and point out early developments of a nonstationary accretion model.


2018 ◽  
Vol 14 (1) ◽  
pp. 5292-5295
Author(s):  
Yuanjie Li ◽  
Lihong Zhang ◽  
Peng Dong

This paper points out that not only all quantum-ghost puzzles occur in the Time Quantum Worm Hole, but also the dark matter in the universe is hidden in it. Dark energy is the contribution of the Planck black hole left behind by the early universe.


2014 ◽  
Vol 2014 ◽  
pp. 1-5 ◽  
Author(s):  
V. I. Dokuchaev ◽  
Yu. N. Eroshenko

We propose the new dark matter particle candidate—the “black hole atom,” which is an atom with the charged black hole as an atomic nucleus and electrons in the bound internal quantum states. As a simplified model we consider the the central Reissner-Nordström black hole with the electric charge neutralized by the internal electrons in bound quantum states. For the external observers these objects would look like the electrically neutral Schwarzschild black holes. We suppose the prolific production of black hole atoms under specific conditions in the early universe.


2020 ◽  
Vol 496 (2) ◽  
pp. 1115-1123
Author(s):  
K Boshkayev ◽  
A Idrissov ◽  
O Luongo ◽  
D Malafarina

ABSTRACT We consider the observational properties of a static black hole space–time immersed in a dark matter envelope. We investigate how the modifications to geometry induced by the presence of dark matter affect the luminosity of the black hole’s accretion disc. We show that the same disc luminosity as produced by a black hole in vacuum may be produced by a smaller black hole surrounded by dark matter under certain conditions. In particular, we demonstrate that the luminosity of the disc is markedly altered by the presence of dark matter, suggesting that the mass estimation of distant supermassive black holes may be changed if they are immersed in dark matter. We argue that a similar effect holds in more realistic scenarios, and we discuss the refractive index related to dark matter lensing. Finally, we show how the results presented here may help to explain the observed luminosity of supermassive black holes in the early Universe.


2003 ◽  
Vol 12 (09) ◽  
pp. 1675-1680
Author(s):  
LIOR M. BURKO

Black holes are always irradiated by the cosmic background radiation. This captured radiation field determines the physical and geometrical nature of the singularity inside the black hole. We find that non-compact radiation fields (similar to the cosmic background radiation) affect dramatically the singularity, and may determine the fate of a falling astronaut. In particular, the dark energy which accelerates the expansion of the universe determines whether the "tunnel" inside the black hole is blocked, or whether the possibility of using the black hole as a portal for hyperspace travel cannot be ruled out as yet.


Sign in / Sign up

Export Citation Format

Share Document