Forest and Field Fire Search System Using MODIS Data

Author(s):  
Eiji Nunohiro ◽  
◽  
Kei Katayama ◽  
Kenneth J. Mackin ◽  
Jong Geol Park ◽  
...  

Tokyo University of Information Sciences receives MODIS (Moderate Resolution Imaging Spectroradiometer) data from NASA’s Terra and Aqua satellites, and provides the processed data to universities and research institutes as part of the academic frontier project. This paper considers the utilization of MODIS data for a system to search for fire regions in forests and fields. For the search system to be effective, the system must be able to extract the location, range and distribution of fires in forests and fields from a large scale image database quickly with high accuracy. In order to achieve high search response time and to improve the accuracy of the analysis, we propose a forest and field fire search system which implements a) a parallel distributed system configuration using multiple PC clusters, and b) MOD02, MOD03 and MOD09 process levels of MODIS data for input data which provide higher resolution and more accurate readings than the standard MOD14 process level data.

2008 ◽  
Vol 112 (5) ◽  
pp. 2643-2655 ◽  
Author(s):  
Kamel Soudani ◽  
Guerric le Maire ◽  
Eric Dufrêne ◽  
Christophe François ◽  
Nicolas Delpierre ◽  
...  

Author(s):  
Yan Zhuang ◽  
Danlu Chen ◽  
Ruiyuan Li ◽  
Ziyue Chen ◽  
Jun Cai ◽  
...  

In recent years, particulate matter (PM) pollution has increasingly affected public life and health. Therefore, crop residue burning, as a significant source of PM pollution in China, should be effectively controlled. This study attempts to understand variations and characteristics of PM10 and PM2.5 concentrations and discuss correlations between the variation of PM concentrations and crop residue burning using ground observation and Moderate Resolution Imaging Spectroradiometer (MODIS) data. The results revealed that the overall PM concentration in China from 2013 to 2017 was in a downward tendency with regional variations. Correlation analysis demonstrated that the PM10 concentration was more closely related to crop residue burning than the PM2.5 concentration. From a spatial perspective, the strongest correlation between PM concentration and crop residue burning existed in Northeast China (NEC). From a temporal perspective, the strongest correlation usually appeared in autumn for most regions. The total amount of crop residue burning spots in autumn was relatively large, and NEC was the region with the most intense crop residue burning in China. We compared the correlation between PM concentrations and crop residue burning at inter-annual and seasonal scales, and during burning-concentrated periods. We found that correlations between PM concentrations and crop residue burning increased significantly with the narrowing temporal scales and was the strongest during burning-concentrated periods, indicating that intense crop residue burning leads to instant deterioration of PM concentrations. The methodology and findings from this study provide meaningful reference for better understanding the influence of crop residue burning on PM pollution across China.


2011 ◽  
Vol 115 (6) ◽  
pp. 1595-1601 ◽  
Author(s):  
Zhuosen Wang ◽  
Crystal B. Schaaf ◽  
Philip Lewis ◽  
Yuri Knyazikhin ◽  
Mitchell A. Schull ◽  
...  

2009 ◽  
Vol 10 (10) ◽  
pp. 1509-1522 ◽  
Author(s):  
Hua-sheng Sun ◽  
Jing-feng Huang ◽  
Alfredo R. Huete ◽  
Dai-liang Peng ◽  
Feng Zhang

2020 ◽  
Author(s):  
Chuyong Lin ◽  
Jason Cohen

<p>A simple variance-maximization approach, based on 19 years of weekly Moderate Resolution Imaging spectroradiometer (MOPITT) CO vertical measurements, was employed to quantify the spatial distribution of the global seasonal biomass burning region. Results demonstrate there are a few large-scale and typical biomass burning regions responsible for most of the biomass burning emissions throughout the world, with the largest of these such regions located in Amazonian South America, Western Africa, Indonesia, and Northern Southeast Asia (Eastern India, Northern Myanmar, Laos, Vietnam and Eastern Bangladesh), which are highly associated with the results of Global Fire Emission Database(GFED). The CO is primarily lofted to and spreads downwind at 800mb or 700mb with three exceptions: The Maritime Continent and South America where there is significant spread at 300mb consistent with known deep- and pyro-convection; and Southern Africa where there is significant spread at 600mb. The total mass of CO lofted into the free troposphere ranges from 46% over Central Africa to 92% over Australia.</p>


2019 ◽  
Vol 11 (3) ◽  
pp. 314 ◽  
Author(s):  
Rita Condé ◽  
Jean-Michel Martinez ◽  
Marco Pessotto ◽  
Raúl Villar ◽  
Gérard Cochonneau ◽  
...  

In this study, we used moderate resolution imaging spectroradiometer (MODIS) satellite images to quantify the sedimentation processes in a cascade of six hydropower dams along a 700-km transect in the Paranapanema River in Brazil. Turbidity field measurement acquired over 10 years were used to calibrate a turbidity retrieval algorithm based on MODIS surface reflectance products. An independent field dataset was used to validate the remote sensing estimates showing fine accuracy (RMSE of 9.5 NTU, r = 0.75, N = 138). By processing 13 years of MODIS images since 2000, we showed that satellite data can provide robust turbidity monitoring over the entire transect and can identify extreme sediment discharge events occurring on daily to annual scales. We retrieved the decrease in the water turbidity as a function of distance within each reservoir that is related to sedimentation processes. The remote sensing-retrieved turbidity decrease within the reservoirs ranged from 2 to 62% making possible to infer the reservoir type and operation (storage versus run-of-river reservoirs). The reduction in turbidity assessed from space presented a good relationship with conventional sediment trapping efficiency calculations, demonstrating the potential use of this technology for monitoring the intensity of sedimentation processes within reservoirs and at large scale.


2021 ◽  
Vol 18 (2) ◽  
pp. 621-635
Author(s):  
Jan Pisek ◽  
Angela Erb ◽  
Lauri Korhonen ◽  
Tobias Biermann ◽  
Arnaud Carrara ◽  
...  

Abstract. Information about forest background reflectance is needed for accurate biophysical parameter retrieval from forest canopies (overstory) with remote sensing. Separating under- and overstory signals would enable more accurate modeling of forest carbon and energy fluxes. We retrieved values of the normalized difference vegetation index (NDVI) of the forest understory with the multi-angular Moderate Resolution Imaging Spectroradiometer (MODIS) bidirectional reflectance distribution function (BRDF)/albedo data (gridded 500 m daily Collection 6 product), using a method originally developed for boreal forests. The forest floor background reflectance estimates from the MODIS data were compared with in situ understory reflectance measurements carried out at an extensive set of forest ecosystem experimental sites across Europe. The reflectance estimates from MODIS data were, hence, tested across diverse forest conditions and phenological phases during the growing season to examine their applicability for ecosystems other than boreal forests. Here we report that the method can deliver good retrievals, especially over different forest types with open canopies (low foliage cover). The performance of the method was found to be limited over forests with closed canopies (high foliage cover), where the signal from understory becomes too attenuated. The spatial heterogeneity of individual field sites and the limitations and documented quality of the MODIS BRDF product are shown to be important for the correct assessment and validation of the retrievals obtained with remote sensing.


2010 ◽  
Vol 49 (3) ◽  
pp. 463-477 ◽  
Author(s):  
David Painemal ◽  
René Garreaud ◽  
José Rutllant ◽  
Paquita Zuidema

Abstract Stratocumulus cloud cover patterns and their relationship to drizzle were characterized at San Felix Island (SFI; 26.5°S, 80°W) in the southeast Pacific Ocean. Small closed, large closed, and open cells were identified in about 65% of the Moderate Resolution Imaging Spectroradiometer (MODIS) satellite images during 2003. The MODIS imagery was combined with ceilometer and surface meteorological measurements, human observations of cloud types and drizzle, and large-scale meteorological analyses for January through June. The authors identified two drizzle regimes: a synoptically quiescent summer (January–March) regime characterized by a strong anticyclone, large closed cells, and frequent drizzle, and an autumn (April–June) regime characterized by a weaker anticyclone, small closed cells and open cells, and precipitation that was mainly associated with synoptic activity. The large closed cells had higher mean cloud bases and tops than the small closed cells and accounted for 45% of the cumulus-under-stratocumulus reports and 29% of the total drizzle and rain reports. Large closed cells occupied more intermittently coupled boundary layers than did the small closed cells. Open cells also occurred in more decoupled conditions but only accounted for 18% of the total reports of drizzle and rain. The atmospheric stability of large and small closed cells was similar, but large closed cells were more commonly associated with a strong anticyclone, and small closed cells with wave activity superimposed upon a weakened anticyclone. The increased drizzle and occurrence of cumulus-under-stratocumulus in the summer rather than autumn is consistent with higher nighttime liquid water paths. A contribution of this study is the documentation of the ways in which synoptic activity can affect stratocumulus decks.


Sign in / Sign up

Export Citation Format

Share Document