scholarly journals Hydromechanical-Coupled Cohesive Interface Simulation of Complex Fracture Network Induced by Hydrofracturing with Low-Viscosity Supercritical CO2

Lithosphere ◽  
2021 ◽  
Vol 2021 (Special 1) ◽  
Author(s):  
Xin Cai ◽  
Wei Liu

Abstract Hydraulic fracturing experiments with low-viscosity fluids, such as supercritical CO2, demonstrate the formation of complex fracture networks spread throughout the rocks. To study the influence of viscosity of the fracturing fluids on hydraulic fracture propagation, a hydromechanical-coupled cohesive zone model is proposed for the simulation of mechanical response of rock grains boundary separation. This simulation methodology considers the synergistic effects of unsteady flow in fracture and rock grain deformation induced by hydraulic pressure. The simulation results indicate a tendency of complex fracture propagation with more branches as the viscosity of fracturing fluids decrease, which is in accord with experimental results. The low-viscosity fluid can flow into the microfractures with extremely small aperture and create more shear failed fracture. This study confirms the possibility of effective well stimulations by hydraulic fracturing with low-viscosity fluids.

Processes ◽  
2019 ◽  
Vol 7 (1) ◽  
pp. 28 ◽  
Author(s):  
Jianxiong Li ◽  
Shiming Dong ◽  
Wen Hua ◽  
Xiaolong Li ◽  
Xin Pan

Complex propagation patterns of hydraulic fractures often play important roles in naturally fractured formations due to complex mechanisms. Therefore, understanding propagation patterns and the geometry of fractures is essential for hydraulic fracturing design. In this work, a seepage–stress–damage coupled model based on the finite pore pressure cohesive zone (PPCZ) method was developed to investigate hydraulic fracture propagation behavior in a naturally fractured reservoir. Compared with the traditional finite element method, the coupled model with global insertion cohesive elements realizes arbitrary propagation of fluid-driven fractures. Numerical simulations of multiple-cluster hydraulic fracturing were carried out to investigate the sensitivities of a multitude of parameters. The results reveal that stress interference from multiple-clusters is responsible for serious suppression and diversion of the fracture network. A lower stress difference benefits the fracture network and helps open natural fractures. By comparing the mechanism of fluid injection, the maximal fracture network can be achieved with various injection rates and viscosities at different fracturing stages. Cluster parameters, including the number of clusters and their spacing, were optimal, satisfying the requirement of creating a large fracture network. These results offer new insights into the propagation pattern of fluid driven fractures and should act as a guide for multiple-cluster hydraulic fracturing, which can help increase the hydraulic fracture volume in naturally fractured reservoirs.


2015 ◽  
Author(s):  
Hisanao Ouchi ◽  
Amit Katiyar ◽  
John T. Foster ◽  
Mukul M. Sharma

Abstract A novel fully coupled hydraulic fracturing model based on a nonlocal continuum theory of peridynamics is presented and applied to the fracture propagation problem. It is shown that this modeling approach provides an alternative to finite element and finite volume methods for solving poroelastic and fracture propagation problems and offers some clear advantages. In this paper we specifically investigate the interaction between a hydraulic fracture and natural fractures. Current hydraulic fracturing models remain limited in their ability to simulate the formation of non-planar, complex fracture networks. The peridynamics model presented here overcomes most of the limitations of existing models and provides a novel approach to simulate and understand the interaction between hydraulic fractures and natural fractures. The model predictions in two-dimensions have been validated by reproducing published experimental results where the interaction between a hydraulic fracture and a natural fracture is controlled by the principal stress contrast and the approach angle. A detailed parametric study involving poroelasticity and mechanical properties of the rock is performed to understand why a hydraulic fracture gets arrested or crosses a natural fracture. This analysis reveals that the poroelasticity, resulting from high fracture fluid leak-off, has a dominant influence on the interaction between a hydraulic fracture and a natural fracture. In addition, the fracture toughness of the rock, the toughness of the natural fracture, and the shear strength of the natural fracture also affect the interaction between a hydraulic fracture and a natural fracture. Finally, we investigate the interaction of multiple completing fractures with natural fractures in two-dimensions and demonstrate the applicability of the approach to simulate complex fracture networks on a field scale.


2021 ◽  
Vol 73 (04) ◽  
pp. 46-47
Author(s):  
Chris Carpenter

This article, written by JPT Technology Editor Chris Carpenter, contains highlights of paper SPE 201346, “Are We Overstimulating Our Laterals? Evaluating Completion Design Practices Based on Field Offset Well-Pressure Measurements,” by Puneet Seth, SPE, The University of Texas at Austin, and Brendan Elliott, SPE, and Trevor Ingle, SPE, Devon Energy, et al., prepared for the 2020 SPE Annual Technical Conference and Exhibition, originally scheduled to be held in Denver, Colorado, 5–7 October. The paper has not been peer reviewed. Increased injection volumes coupled with a suboptimal completion design can lead to overstimulation at current well-spacing densities. In the complete paper, the authors analyze offset well-pressure measurements in the Permian Basin to evaluate if a fracturing job is overstimulated. Additionally, numerical modeling studies are performed to evaluate the extent of overstimulation in different scenarios and provide recommendations to maximize the capital efficiency of a fracturing job. In their analysis, the authors focus on the scenario in which fracturing hits occur when child-well fractures intersect with the parent well. Field Data Analysis Pumping for the full designed volume and time (typically 90 minutes) according to well-stimulation procedures is currently common in the industry. Often, the observation of hydraulic interactions is not coupled with a decision to alter or change the stimulation. The authors analyzed the offset well-pressure response monitored with a surface pressure gauge in multiple parent wells in the Permian Basin during stimulation in nearby child wells. The child wells were stimulated after roughly 1 year of production from the parent wells. The focus of this study was to identify fracture-driven interactions—specifically the timing of intersection of the child-well fractures with the offset parent wells, which are recorded as massive hydraulic pressure responses. The results of this analysis for different well pairs are presented in the complete paper. To better understand the factors that affect fracture propagation from the child wells toward the parent wells, fracture arrival times, and capital efficiency of a fracturing job, a series of numerical simulations was performed with a fully coupled hydraulic fracturing simulator. Simulation Results Numerical simulations were performed using an integrated hydraulic fracturing and reservoir simulator developed at The University of Texas at Austin. This simulator solves for flow and geomechanics in the reservoir, fracture, and wellbore domains in a tightly coupled manner. Hydraulic fractures are modeled as compliant discontinuities in the reservoir rather than high-permeability gridblocks. This is important in order to capture the stress alterations around a propagating fracture accurately. Effect of Parent-Well Production (Depleted Region). For this study, two scenarios were analyzed. In the first case, fracture propagation from a child well stimulated near a recently fractured unproduced parent well (no depletion) was considered. In this case, the fracture from the child well propagates away from the parent well because of elevated stresses near the parent well. In the second case, a child well is stimulated near a parent well that has been producing for 300 days before child-well stimulation. In this scenario, the child-well fracture propagates toward the parent well because of a depleted region that develops near the parent well (because of production) and relaxes the reservoir stresses around the parent well. This causes the child-well fracture to grow preferentially toward the parent well (toward the low-stress region). In fact, in this scenario, as the fracture reaches the depleted reservoir region, its growth accelerates toward the parent well and intersects with the parent well. Even minor depletion can induce asymmetric growth of infill child-well fractures toward the parent well.


2021 ◽  
Author(s):  
Ayomikun Bello

Abstract Slick water fracturing fluids with high viscosity and minimal friction pressure losses are commonly employed in hydraulic fracturing nowadays. At the same time, high injection rates can be used to perform hydraulic fracturing to get the calculated fracture sizes. The conventional algorithm for conducting a standard proppant hydraulic fracturing includes performing a pressure test using a linear gel without a trial proppant pack to determine the quality of communication with the formation and the initial parameters of the fracture; and performing a mini-hydraulic fracturing on a cross-linked gel with a trial proppant pack (1000 - 2000 kg) to assess the parameters of the fracture development used to correct the design of the main hydraulic fracturing operation. However, in complex geological conditions associated with the presence of small clay barriers between the target formation and above or below the water-saturated layers, as well as in low-productive formations, this conventional method of conducting hydraulic fracturing operations using high-viscosity fluids is not always suitable. Hydraulic fracturing in thin-layer formations is associated with a significant risk of the tightness established by the fracture being broken, as well as fluids contained in the underlying or overlying layers being involved in the drainage process. Hydraulic fracturing in low-productive formations creates fractures that are similar in shape to radial fractures, reducing the efficiency and profitability of the impact due to inefficient use of materials and reagents. The main task in this situation is to limit the height of the fracture development and increase their length. It is necessary to use low-viscosity fracturing fluids with a high ability to transfer proppants to reduce the specific pressure in the fracture and control the height of the rupture. The goal of this research is to develop such fluid.


Minerals ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 428
Author(s):  
Yunzhong Jia ◽  
Zhaohui Lu ◽  
Hong Liu ◽  
Jiehao Wang ◽  
Yugang Cheng ◽  
...  

Non-aqueous or gaseous stimulants are alternative working fluids to water for hydraulic fracturing in shale reservoirs, which offer advantages including conserving water, avoiding clay swelling and decreasing formation damage. Hence, it is crucial to understand fluid-driven fracture propagation and morphology in shale formations. In this research, we conduct fracturing experiments on shale samples with water, liquid carbon dioxide, and supercritical carbon dioxide to explore the effect of fluid characteristics and in situ stress on fracture propagation and morphology. Moreover, a numerical model that couples rock property heterogeneity, micro-scale damage and fluid flow was built to compare with experimental observations. Our results indicate that the competing roles between fluid viscosity and in situ stress determine fluid-driven fracture propagation and morphology during the fracturing process. From the macroscopic aspect, fluid-driven fractures propagate to the direction of maximum horizontal stress direction. From the microscopic aspect, low viscosity fluid easily penetrates into pore throats and creates branches and secondary fractures, which may deflect the main fracture and eventually form the fracture networks. Our results provide a new understanding of fluid-driven fracture propagation, which is beneficial to fracturing fluid selection and fracturing strategy optimization for shale gas hydraulic fracturing operations.


SPE Journal ◽  
2017 ◽  
Vol 22 (06) ◽  
pp. 1714-1738 ◽  
Author(s):  
Mahdi Haddad ◽  
Jing Du ◽  
Sandrine Vidal-Gilbert

Summary Microseismic mapping during the hydraulic-fracturing processes in the Vaca Muerta (VM) Shale in Argentina shows a group of microseismic events occurring at shallower depth and at later injection time, and they clearly deviate from the growing planar hydraulic fracture. This spatial and temporal behavior of these shallow microseismic events incurs some questions regarding the nature of these events and their connectivity to the hydraulic fracture. To answer these questions, in this article, we investigate these phenomena by use of a true 3D fracture-propagation-modeling tool along with statistical analysis on the properties of microseismic events. First, we propose a novel technique in Abaqus incorporating fracture intersections in true 3D hydraulic-fracture-propagation simulations by use of a pore-pressure cohesive zone model (CZM), which is validated by comparing our numerical results with the Khristianovic-Geertsma-de Klerk (KGD) solution (Khristianovic and Zheltov 1955; Geertsma and de Klerk 1969). The simulations fully couple slot flow in the fracture with poroelasticity in the matrix and continuum-based leakoff on the fracture walls, and honor the fracture-tip effects in quasibrittle shales. By use of this model, we quantify vertical-natural-fracture activation and fluid infiltration depending on reservoir depth, fracturing-fluid viscosity, mechanical properties of the natural-fracture cohesive layer, natural-fracture conductivity, and horizontal stress contrast. The modeling results demonstrate this natural-fracture activation in coincidence with the hydraulic-fracture-growth complexities at the intersection, such as height throttling, sharp aperture reduction after the intersection, and multibranching at various heights and directions. Finally, we investigate the hydraulic-fracture intersection with a natural fracture in the multilayer VM Shale. We infer the natural-fracture location and orientation from the microseismic-events map and formation microimager log in a nearby vertical well, respectively. We integrate the other field information such as mechanical, geological, and operational data to provide a realistic hydraulic-fracturing simulation in the presence of a natural fracture. Our 3D fracturing simulations equipped with the new fracture-intersection model rigorously simulate the growth of a realistic hydraulic-connection path toward the natural fracture at shallower depths, which was in agreement with our microseismic observations.


2021 ◽  
pp. 1-19
Author(s):  
Chao Wei ◽  
Bo Zhang ◽  
Shucai Li ◽  
Zhixin Fan ◽  
Chengxin Li

Summary Pulse hydraulic fracturing technology can greatly improve the effect of fracture propagation in rock and form complex fracture networks in reservoirs. The interaction mechanism between hydraulic fractures and pre-existing fractures under pulse hydraulic pressure is unclear. The induced laws of pre-existing fractures on the propagation direction of hydraulic fractures under different pulse frequencies and pulse hydraulic pressures are revealed in this work. We have carried out traditional hydraulic fracturing (THF) tests and pulse hydraulic fracturing tests with rock-like specimens. We compared the interaction between hydraulic fractures and pre-existing fractures in the two hydraulic fracturing tests. Acoustic emission (AE) characteristics of the interaction between hydraulic fractures and pre-existing fractures during pulse hydraulic fracturing are analyzed. The results show that pre-existing fractures in the rock-like specimen can induce the direction of propagation of hydraulic fractures. The influence of pre-existing fracture tips on hydraulic fracture propagation is greater with low pulse frequencies than with traditional hydraulic pressures and high pulse frequencies. When the pulse frequency is 1 Hz, hydraulic fractures are easily induced by pre-existing fracture tips. With increasing pulse frequency, the hydraulic fracture propagation direction gradually moves away from the pre-existing fracture tips and extends perpendicularly to the direction of the minimum principal stress. Under pulse hydraulic loading, more hydraulic fractures are generated around the wellbore than under THF and extend to the pre-existing fracture, and more hydraulic fractures around the wellbore are created with low-frequency pulse loading than with high-frequency pulse loading. Compared with traditional hydraulic pressures, hydraulic fracture propagation with low pulse frequencies (1 and 3 Hz) is more complex than hydraulic fracture propagation with traditional hydraulic pressures and high pulse frequencies (5 Hz). Under high pulse hydraulic pressure and pulse frequency, hydraulic fractures easily extend along the direction perpendicular to the direction of the minimum principal stress like propagation under traditional hydraulic pressure. The study of the interaction mechanism between hydraulic fractures and natural fractures under pulsating hydraulic pressure can provide a method for the formation of fracture network systems in large-scale fracturing and may improve the fracturing efficiency.


2022 ◽  
Author(s):  
Jin Tang ◽  
Ding Zhu

Abstract In multistage hydraulic fracturing treatments, the combination of extreme large-scale pumping (high rate and volume) and the high heterogeneity of the formation (because of large contact area) normally results in complex fracture growth that cannot be simply modeled with conventional fracture models. Lack of understanding of the fracturing mechanism makes it difficult to design and optimize hydraulic fracturing treatments. Many monitoring, testing and diagnosis technologies have been applied in the field to describe hydraulic fracture development. Strain rate measured by distributed acoustic sensor (DAS) is one of the tools for fracture monitoring in complex completion scenarios. DAS measures far-field strain rate that can be of assistance for fracture characterization, cross-well fracture interference identification, and well stimulation efficiency evaluation. Many field applications have shown DAS responses on observation wells or surrounding producers when a well in the vicinity is fractured. Modeling and interpreting DAS strain rate responses can help quantitatively map fracture propagation. In this work, a methodology is developed to generate the simulated strain-rate responds to assumed fracture systems. The physical domain contains a treated well that the generate strain variation in the domain because of fracturing, and an observation well that has fiber-optic sensor installed along it to measure the strain rate responses to the fracture propagation. Instead of using a complex fracture model to forward simulate fracture propagation, this work starts from a simple 2D fracture propagation model to provide hypothetical fracture geometries in a relatively reasonable and acceptable range for both single fracture case and multiple fracture case. Displacement discontinuity method (DDM) is formulated to simulate rock deformation and strain rate responds on fiber-optic sensors. At each time step, fracture propagation is first allowed, then stress, displacement and strain field are estimated as the fracture approaches to the observation well. Afterward, the strain rate is calculated as fracture growth to generate patterns as fracture approaching. Extended simulation is conducted to monitor fracture propagation and strain rate responses. The patterns of strain rate responses can be used to recognize fracture development. Examples of strain rate responses for different fracturing conditions are presented in this paper. The relationship of injection rate distribution and strain rate responses is investigated to show the potential of using DAS measurements to diagnose multistage hydraulic fracturing treatments.


2021 ◽  
Author(s):  
Konstantin Yurievich Loskutov ◽  
Almaz Albertovich Sadretdinov ◽  
Michael Ivanovich Samoilov ◽  
Dmitriy Vasilevich Emelyanov ◽  
Yuri Aleksandrovich Delyanov ◽  
...  

Abstract Tyumenskaya and Vikulovskya stratas are the major development objects for Rosneft subsidiary – RN- Nyaganneftegaz, characterized by close location of target zones to other layers, breakthrough in which is not desirable. Thus, target zones of Tyumenskaya group of formations are located close to Abalakskaya strata, and Vikulovskaya group of formations is described by close location of the target hydraulic fracturing intervals to the water-saturated layers. Risks of multi-stage hydraulic fracturing are high due to the use of synthetic geological and geomechanical models and synthetic logging associated with different sections of horizontal wells. The article presents the implementation experience of specifically developed technological solution in order to increase profitability of development and production of hydrocarbons and decrease the risks of ineffective stimulation: use of low-viscosity viscoelastic hydraulic fracturing fluids based on synthetic polymer- polyacrylamide with inherited ability to control fracture height growth without a need in significant reduction of proppant volume. The work performed on development and introduction of novel low-viscosity fluids based on polyacrylamide on Vikulovskaya and Tyumenskaya formations - RN-Nyaganneftegaz development objects has become a new stage in the history of hydraulic fracturing of these formations, and as well as for other oilfields with similar geological structure and field development conditions. The gained experience formed a basis for the effective implementation of similar hydraulic fracturing fluid systems and increasing of well productivity following in the result of well stimulation.


Sign in / Sign up

Export Citation Format

Share Document