Estimation of Fracture Porosity of Naturally Fractured Reservoirs With No Matrix Porosity Using Fractal Discrete Fracture Networks
Summary Matrix porosity is relatively easy to measure and estimate compared to fracture porosity. On the other hand, fracture porosity is highly heterogeneous and very difficult to measure and estimate. When matrix porosity of naturally fractured reservoirs (NFRs) is negligible, it is very important to know fracture porosity to evaluate reservoir performance. Because fracture porosity is highly uncertain, fractal discrete fracture network (FDFN) generation codes were developed to estimate fracture porosity. To reflect scale-dependent characteristics of fracture networks, fractal theories are adopted. FDFN modeling technique enables the systematic use of data obtained from image log and core analysis for estimating fracture porosity. As a result, each fracture has its own fracture aperture distribution, so that generated FDFN are similar to actual fracture systems. The results of this research will contribute to properly evaluating the fracture porosity of NFR where matrix porosity is negligible.