Generalized Hydraulic Calculation Method for Axial Flow of Non-Newtonian Fluids in Eccentric Annuli

2009 ◽  
Vol 24 (04) ◽  
pp. 553-563 ◽  
Author(s):  
Ali Pilehvari ◽  
Robert Serth
2011 ◽  
Vol 317-319 ◽  
pp. 2266-2270
Author(s):  
Li Xin Wei ◽  
Jiang Bo Wen ◽  
Lu Ying Zhang ◽  
Yan Chun Xu ◽  
Peng Li

On the basis of analyzing process and structure characteristics of branch shape water-injection pipe network, this paper established a hydraulic calculation method of branch shape water-injection pipe network based on binary tree. This method has many advantages, such as calculation speed is fast, occupying less memory, having high calculation accuracy, and so on. According to it, this paper compiled a computer program and presented an actual example.


Author(s):  
Volodymyr Cherniuk ◽  
Roman Hnativ ◽  
Oleksandr Kravchuk ◽  
Vadym Orel ◽  
Iryna Bihun ◽  
...  

Most production technologies require a uniform flow path of liquid from pressure distribution pipelines. To achieve this goal, it is proposed to introduce polymer additives into the liquid flow or to use converging distribution pipelines with a continuous longitudinal slot in the wall. To reduce the uneven operation of the distribution pipeline during discrete liquid dispensing, it is proposed to use cylindrical output rotary nozzles with a lateral orthogonal entry of the jet into the nozzle. The problem is the lack of methods for accurate hydraulic calculation of the operation of distribution pipelines. Adequate calculation methods are based on differential equations. Finding the exact solution of the differential equation of fluid motion with variable path flow rate for perforated distribution pipelines is urgent, because it still does not exist. The available calculation methods take into account only the right angles of separation of the jets from the flow in the distribution pipeline. These methods are based on the assumption that the coefficient of hydraulic friction and the coefficient of resistance of the outlets are constant along the flow. A calculation method is proposed that takes into account the change in the values of these resistance coefficients along the distribution pipeline. The kinematic and physical characteristics of the flow outside the distribution pipeline are also taken into account. The accuracy of calculating the value of the flow rate of water distributed from the distribution pipeline has been experimentally verified. The error in calculating the water consumption by the method assuming that the values of the resistance coefficients are unchanged along the distribution pipeline reaches 18.75 %. According to the proposed calculation method, this error does not exceed 6.25 %. However, both methods are suitable for the design of pressure distribution pipelines, provided that the jet separation angles are straight. Taking into account the change from 90° to 360° of the angle of separation of the jets from the flow in the distribution pipeline will expand the scope and accuracy of calculation methods.


2021 ◽  
pp. 1-18
Author(s):  
Vahid Dokhani ◽  
Yue Ma ◽  
Zili Li ◽  
Mengjiao Yu

Summary The effect of axial flow of power-law drilling fluids on frictional pressure loss under turbulent conditions in eccentric annuli is investigated. A numerical model is developed to simulate the flow of Newtonian and power-law fluids for eccentric annular geometries. A turbulent eddy-viscosity model based on the mixing-length approach is proposed, where a damping constant as a function of flow parameters is presented to account for the near-wall effects. Numerical results including the velocity profile, eddy viscosity, and friction factors are compared with various sets of experimental data for Newtonian and power-law fluids in concentric and eccentric annular configurations with diameter ratios of 0.2 to 0.8. The simulation results are also compared with a numerical study and two approximate models in the literature. The results of extensive simulation scenarios are used to obtain a novel correlation for estimation of the frictional pressure loss in eccentric annuli under turbulent conditions. Two new correlations are also presented to estimate the maximum axial velocity in the wide and narrow sections of eccentric geometries.


1965 ◽  
Vol 5 (04) ◽  
pp. 277-280 ◽  
Author(s):  
Robert D. Vaughn

Abstract The analysis of laminar flow of power-law non- Newtonian fluids in narrow, eccentric annuli is employed in this paper to discuss the problems of lubricant flow in journal bearings and of errors introduced by eccentricity in experimental studies with concentric annuli on extruders and wellbore annuli. The velocity profile and pressure loss-flow rate equations are developed for the laminar flow region. In addition, the expected error in flow rate and pressure-loss measurements for concentric annuli as a result of eccentricity is determined. For example, a 10 per cent displacement of the core of an almost concentric annulus would cause a 1.8 per cent decrease in the observed pressure loss for a fluid with a power-law exponent n of 0.25. The corresponding increase in the observed volumetric flow rate would be 7.5 per cent. Introduction Non-Newtonianism and eccentricity occur simultaneously in two engineering problems:flow of lubricants in journal-bearings and pressure-reducing bushings, andflow of non-Newtonian fluids in plastic extruders and wellbore annuli. The lubricants used for moving parts are often non-Newtonian in character - often they are plastic in behavior. A solution to the problem of flow of non-Newtonian fluids in narrow eccentric annuli is particularly pertinent to this problem. In all experimental studies of laminar flow of fluids in concentric annuli, such as in extruders and well casings, the error due to eccentricity must be estimated or studied. A number of publications have dealt with this problem for Newtonian fluids; however, I am not aware of work for non-Newtonian fluids. This work is directed to the non-Newtonian problem. Before the solution to the problem is given, the pertinent conclusions from the work on Newtonian fluids will be reviewed. Heyda and Redberger and Charles have published general solutions to the problem of the laminar flow of Newtonian fluids in eccentric annuli, apparently without knowing of the earlier work of Caldwell and Bairstow and Berry, which is reported by Dryden, et al. Although several mathematical routes are encompassed by the work of these authors, the results appear to be equivalent. Redberger and Charles show that the error caused by eccentricity in concentric annuli is negligible for small diameter ratios (K less than 0.5); however, for large diameter ratios (K - 1), the error in the predicted flow rate can be as great as 100 per cent or more. Partial solutions to the problem are available from the work of Dryden, Tao and Donovan and Piercy, et al. Tao and Donovan examined the case of flow in narrow, eccentric annuli (K - 1) with and without rotation of the annular core. These authors also reviewed previous work on this subject and verified their approach with experimental data. Dryden gives the solution for the limiting case of complete eccentricity or tangency. Piercy, et al. published an early solution to the problem of narrow eccentric annular flow. The conclusions of Redberger and Charles and the experimental proof of Tao and Donovans both suggest that the region of large diameter ratios (K - 1) is of main interest and that the parallel planes approximation to the solution in this region is satisfactory. This method will now be extended to the laminar flow of non-Newtonian fluids in narrow eccentric annuli. THEORETICAL SOLUTION The geometrical aspects of the problem are illustrated in Fig. 1. To represent the non-Newtonian fluid the power-law model was selected. (1) This model has many disadvantages which have been pointed out; nevertheless, As simplicity, its frequent and wide applicability justify its use in this work. Fredrickson and Birds and Savins have used it as a basis for a theoretical study of laminar flow of non-Newtonian fluids in concentric annuli. SPEJ P. 277ˆ


1990 ◽  
Vol 5 (01) ◽  
pp. 91-96 ◽  
Author(s):  
Yuejin Luo ◽  
J.M. Peden

2013 ◽  
Vol 353-356 ◽  
pp. 3049-3053
Author(s):  
Yong Zheng Fu ◽  
Yao Xiong ◽  
Hui Hui Liu

For hot water heating direct return system, the common hydraulic calculation method in engineering design is constant temperature drop method,which is calculated from the farthest riser loop. Due to the limit of the minimum pipe size, the method is usually difficult to achieve the hydraulic balance for every riser loop, and it needs the utilization of valves to meet the need. In this paper, through a calculation example, it has explained that every riser loop is very easy to achieve hydraulic balance without the utilization of valves when the system is calculated from the nearest riser loop. Besides, the calculation order of this method has been given.


Sign in / Sign up

Export Citation Format

Share Document