The Role of Elasto-Plasticity in Cavity Shape and Sand Production in Oil and Gas Wells

SPE Journal ◽  
2018 ◽  
Vol 24 (02) ◽  
pp. 744-756 ◽  
Author(s):  
Haotian Wang ◽  
Mukul M. Sharma

Summary Previous experimental observations have shown the formation of distinct failure patterns and cavity shapes under different stress and flow conditions. With isotropic stress, spiral failure patterns with localized shear bands are likely to form. On the other hand, under anisotropic stress, V-shaped cavities, dog-ear cavities, or slit-mode cavities are usually observed. However, the mechanisms for the development of these sanding cavities have not been fully articulated. In addition, to accurately predict the onset of sanding and to predict the sand-production rate, it is crucial to capture the physics of the formation of these cavities during sand production. This paper presents a fully coupled poro-elasto-plastic, 3D sand-production model for sand-production prediction around openhole and perforated wellbores in a weakly consolidated formation. Sanding criteria are based on a combination of shear failure, tensile failure, and compressive failure from the Mohr-Coulomb theory and strain-hardening/softening. After the failure criteria are met, an algorithm for the entrainment of the sand based on the calculation of hydrodynamic forces is implemented to predict sand erosion and transport. Dynamic mesh refinement has been implemented to effectively capture the strain-localization regions. The model has been validated with multiple analytical solutions. In addition, it is applied to compare with previous sand-production experiments that have explored the different cavity shapes formed under different conditions. The model is capable of not only explaining the mechanisms responsible for each type of cavity shape but also predicting the cavity shape that will be formed under a specific set of conditions. Parametric studies for these cases provide an additional insight into the important role that the post-yield, poro-elasto-plastic properties of the sand play in controlling the sanding mechanisms and cavity development. This allows us to predict, much more accurately, the onset of sanding and the sanding rate.

2016 ◽  
Vol 1133 ◽  
pp. 624-628
Author(s):  
Sonny Irawan ◽  
Mahmood Bataee ◽  
Mohammad Reza Zare

This paper has reviewed the failure criteria that had been applied in the wellbore studies. Rock failure studies had applied in the wellbore and reservoir to establish the stability, which is a major problem in oil and gas wells. There problems are both in injection wells and production wells. In injection wells, fracturing is a problem and in production wells, sand production affects the oil flow rate. The stress state of the well determines the stability of the well using the failure criteria.Different failure criteria and their applications had been studied. The theory of the failure has expressed; then applied criteria, formulation and modification of different criteria is expressed for different wellbore studies. And finally the important aspects and differences in wellbore failure rather than the rock surface failure has been discussed.


2019 ◽  
Vol 141 (8) ◽  
Author(s):  
Ahmed K. Abbas ◽  
Ralph E. Flori ◽  
Mortadha Alsaba

The Lower Cretaceous Zubair Formation is a regionally extended gas- and oil-producing sandstone sequence in Southern Iraq. Due to the weak nature of the Zubair Formation, the lack of wellbore stability is one of the most critical challenges that continuously appears during the drilling development operations. Problems associated with lack of wellbore stability, such as the tight hole, shale caving, stuck pipe, and sidetracking, are both time-consuming and expensive. This study aimed to construct a geotechnical model based on offset well data, including rock mechanical properties, in situ stresses, and formation pore pressure, coupled with suitable rock failure criteria. Mohr–Coulomb and Mogi–Coulomb failure criteria were used to predict the potential rock failure around the wellbore. The effect of the inclination and azimuth of the deviated wells on the shear failure and tensile failure mud weights was investigated to optimize the wellbore trajectory. The results show that the best orientation to drill highly deviated wells (i.e., inclinations higher than 60 deg) is along to the minimum horizontal stress (140 deg). The recommended mud weight for this selected well trajectory ranges from 1.45 to 1.5 g/cc. This study emphasizes that a wellbore stability analysis can be applied as a cost-effective tool to guide future highly deviated boreholes for better drilling performance by reducing the nonproductive time.


SPE Journal ◽  
2021 ◽  
pp. 1-18
Author(s):  
Yurong Jin ◽  
Yanlong Li ◽  
Nengyou Wu ◽  
Daoyong Yang

Summary As one of the geotechnical risks, sanding has been one of the main constraints for safely and sustainably developing marine natural gas hydrate. In this study, a cylindrical vessel that is packed with the clayey-silt sediment collected from the Shenhu area of the northern South China Sea is used to microscopically observe sand detachment, migration within matrix, invasion to gravel packing, and production for openhole gravel packing. More specifically, by injecting water from the vessel boundary, the seepage and stress-strain field for sediment near the wellbore after hydrate dissociation is simulated, and the sand failure characteristics [i.e., the produced sand volume and particle size distributions (PSDs)] are quantified. The sand failure pattern is found to largely differ from that of a sandstone reservoir, whereas fractures, wormholes, and fluidized channels are successively developed along with a large scale of sand production and inlet pressure variation. Followed is a steady flow state with a stable inlet pressure without noticeable sand failure. Correspondingly, the fracture is induced and propagated by the combinational effort of shear and tensile failure, whereas wormholes and fluidized channels are associated with the liquid dragging force. At the end of each test, foraminifera are found to accumulate near the external side of the gravel-packing region, which is beneficial to sand control. In the meantime, a compact mudcake, as an infiltration medium, is observed outside the gravel-packing layer. The 30/50 mesh gravel packing is able to control grain size up to 30.0 µm in diameter with a median of 5.0 µm, whereas the produced grains account for less than 1.0 vol% of the total sediment. By performing sensitivity analysis on sand production, depressurization shall be conducted at a small rate to not only control sand production, but also to induce flow paths at the early stage. Moreover, the sand production rate associated with fracture development is larger than those of wormholes and fluidized channels. This study focuses on the experimental observations on sand failure patterns, and the theoretical formulations and modeling will be presented and explained in a future work.3


Energies ◽  
2019 ◽  
Vol 12 (20) ◽  
pp. 4019
Author(s):  
Wang ◽  
Weijermars

This study presents a new interface for wellbore stability analysis, which visualizes and quantifies the stress condition around a wellbore at shear and tensile failure. In the first part of this study, the Mohr–Coulomb, Mogi–Coulomb, modified Lade and Drucker–Prager shear failure criteria, and a tensile failure criterion, are applied to compare the differences in the critical wellbore pressure for three basin types with Andersonian stress states. Using traditional wellbore stability window plots, the Mohr–Coulomb criterion consistently gives the narrowest safe mud weight window, while the Drucker–Prager criterion yields the widest window. In the second part of this study, a new type of plot is introduced where the safe drilling window specifies the local magnitude and trajectories of the principal deviatoric stresses for the shear and tensile wellbore failure bounds, as determined by dimensionless variables, the Frac number (F) and the Bi-axial Stress scalar (χ), in combination with failure criteria. The influence of both stress and fracture cages increases with the magnitude of the F values, but reduces with depth. The extensional basin case is more prone to potential wellbore instability induced by circumferential fracture propagation, because fracture cages persists at greater depths than for the compressional and strike-slip basin cases.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yuzhou Xiang ◽  
Zhikai Zeng ◽  
Yangjun Xiang ◽  
Erdi Abi ◽  
Yingren Zheng ◽  
...  

AbstractGeo-materials may present varying mechanical properties under different stress paths, especially for tunnel excavation, which is typically characterized by the decreased radial stress and increased axial stress during the complex loading and unloading process. This study carried out a comparative analysis between the loading and unloading model testing, which was then combined with PFC2D simulation, aiming to reveal the fracture propagation pattern, microscopic stress and force chain distribution of the rock mass surrounding the tunnel. Comparisons of extents and development of tensile strain between loading and unloading testing results were made. The overall stability, the integrity of rock mass, and the failure pattern transition under loading and unloading processes were systematically examined. In addition, for the two unloading cases with different vertical stresses imposed, the failure patterns were both identified as the collapse of the V − shaped extruded sidewall, due to the coupling of the shear failure and the vertical tensile failure in the sidewall wedge.


2016 ◽  
Vol 30 (4) ◽  
pp. 545-563 ◽  
Author(s):  
H Shanazari ◽  
GH Liaghat ◽  
H Hadavinia ◽  
A Aboutorabi

In addition to fiber properties, the fabric structure plays an important role in determining ballistic performance of composite body armor textile. Textile structures used in ballistic protection are woven fabrics, unidirectional (UD) fabric structures, and nonwoven fabrics. In this article, an analytical model based on wave propagation and energy balance between the projectile and the target is developed to analyze hybrid fabric panels for ballistic protection. The hybrid panel consists of two types of structure: woven fabrics as the front layers and UD material as the rear layers. The model considers different cross sections of surface of the target in the woven and UD fabric of the hybrid panel. Also the model takes into account possible shear failure by using shear strength together with maximum tensile strain as the failure criteria. Reflections of deformation waves at interface between the layers and also the crimp of the yarn are modeled in the woven part of the hybrid panel. The results show greater efficiency of woven fibers in front layers (more shear resistance) and UD yarns in the rear layers (more tensile resistance), leading to better ballistic performance. Also modeling the yarn crimp results in more trauma at the backface of the panel producing data closer to the experimental results. It was found that there is an optimum ratio of woven to UD materials in the hybrid ballistic panel.


2003 ◽  
Vol 18 (9) ◽  
pp. 2039-2049 ◽  
Author(s):  
Jun Lu ◽  
Guruswami Ravichandran

An experimental study of the inelastic deformation of bulk metallic glass Zr41.2Ti13.8Cu12.5Ni10Be22.5 under multiaxial compression using a confining sleeve technique is presented. In contrast to the catastrophic shear failure (brittle) in uniaxial compression, the metallic glass exhibited large inelastic deformation of more than 10% under confinement, demonstrating the nature of ductile deformation under constrained conditions in spite of the long-range disordered characteristic of the material. It was found that the metallic glass followed a pressure (p) dependent Tresca criterion τ = τ0 + βp, and the coefficient of the pressure dependence β was 0.17. Multiple parallel shear bands oriented at 45° to the loading direction were observed on the surfaces of the deformed specimens and were responsible for the overall inelastic deformation.


2021 ◽  
Author(s):  
Gilbert Hinge ◽  
Jayanta Kumar Das ◽  
Biswadeep Bharali

<p>The success of any civil engineering structure's foundation design depends upon the accuracy of estimation of soil’s ultimate bearing capacity. Numerous numerical approaches have been proposed to estimate the foundation's bearing capacity value to avoid repetitive and expensive experimental work. All these models have their advantages and disadvantages. In this study, we compiled all the governing equations mentioned in Bureau of Indian standard IS:6403-1981 and modify the equation for Ultimate Bearing Capacity. The equation was modified by considering two new parameters, K1(for general shear) and K2 (for local shear) so that a common governing equation can be used for both general and local shear failure criteria. The program used for running the model was written in MATLAB language code and verified with the observed field data. Results indicate that the proposed model accurately characterized the ultimate, safe, and allowable bearing capacity of a shallow footing at different depths. The correlation coefficients between the observed and model-predicted bearing capacity values for a 2m foundation depth with footing size of 1.5 ×1.5, 2.0 × 2.0, and 2.5 × 2.5 m are 0.95, 0.94, and 0.96. A similar result was noted for the other foundation depth and footing size. Findings show that the model can be used as a reliable tool for predicting the bearing capacity of shallow foundations at any given depth.  Moreover, the formulated model can also be used for the transition zone between general and local shear failure conditions.</p>


Sign in / Sign up

Export Citation Format

Share Document