pore connectivity
Recently Published Documents


TOTAL DOCUMENTS

209
(FIVE YEARS 73)

H-INDEX

28
(FIVE YEARS 5)

2022 ◽  
Vol 6 (1) ◽  
pp. 54-68
Author(s):  
Jiale Zhao ◽  
Mengdi Sun ◽  
Zhejun Pan ◽  
Bo Liu ◽  
Mehdi Ostadhassan ◽  
...  

2021 ◽  
Author(s):  
Behzad Ghanbarian ◽  
Misagh Esmaeilpour ◽  
Robert Ziff ◽  
Muhammad Sahimi

2021 ◽  
Author(s):  
Lijun Guan ◽  
Wei Zhang ◽  
Ping Zhang ◽  
Yuqing Yang ◽  
Weiping Cui ◽  
...  

Abstract Tight sandstone reservoirs characterization and evaluation is very difficult based on conventional well log data owing to the extremely low porosity and permeability, and strong heterogeneity. The main accumulation spaces of conventional reservoirs are intergranular pores, and the pore size is the main controlling factor of permeability. However, besides intergranular pores, fractures play much greater important role in accumulating hydrocarbon, improving the pore connectivity and pore structure in tight sandstone reservoirs. Hence, it should be accurately predicted the pore structure dredged by fractures to improve the characterization of tight sandstone reservoirs. Generally, nuclear magnetic resonance (NMR) logging is an effective method to evaluate formation pore structure. However, it cannot be well used in fractured reservoirs because the NMR T2 spectra has no any response for fractures with width <2mm. The borehole electrical image log is usable in characterizing fractured reservoirs. The pore spectrum, which is extracted from the borehole electrical image log, can be used to qualitatively reflect the pore size. Hence, it will play an important role in fractured reservoirs pore structure characterization. In this study, based on the comprehensive analysis of the pore spectra, the corresponding mercury injection capillary pressure (MICP) data and pore-throat radius distributions acquired from core samples, a relationship that connects the 1/POR and capillary pressure (Pc) is proposed. Established a model based on formation classification to transform porosity spectrum into pseudo capillary pressure curve. In addition, a Swanson parameter-based permeability prediction model is also developed to extract fractured formation permeability. Meanwhile, to verify the superiority and otherness of borehole electrical image and NMR log, the model that evaluated reservoirs pore structure from NMR log is also established. Based on the application of the proposed method and models in actual formations, the evaluated pore structure parameters and permeabilities from two types of well log data are compared. The results illustrates that in formations with relative good pore structure, the predicted pore structure parameters and permeabilities from these two types of well log data agree well with the drill stem testing data and core-derived result. However, in low permeability sandstones with relatively poor pore structure, the porosity spectra can be well used to evaluate the pore structure, whereas the characterized pore structure from NMR log is overestimated. With the comprehensive research of reservoirs pore structure and permeability, the fractured tight sandstone formations with development value are precisely identified. This proposed method has greatest advantages that the pore structure of fractured reservoirs can be characterized, and the contribution of fractures to the pore connectivity and permeability can be quantified. it is usable in tight sandstone reservoirs validity prediction.


2021 ◽  
Vol 151 ◽  
pp. 111600
Author(s):  
J. Castro-Gutiérrez ◽  
N. Díez ◽  
M. Sevilla ◽  
M.T. Izquierdo ◽  
A. Celzard ◽  
...  

Author(s):  
Qiyang Gou ◽  
Shang Xu ◽  
Fang Hao ◽  
Yangbo Lu ◽  
Zhiguo Shu ◽  
...  

The Wufeng-Longmaxi shales and the Niutitang shales are the most important organic-rich marine shales in southern China. To fully understand the significant difference in drilling results between the two sets of shales, the accumulation conditions of shale gas were systematically compared. The Niutitang shales have a superior material base of hydrocarbon generation for higher total organic carbon than the Wufeng-Longmaxi shales. Due to the influence of hydrothermal activities and carbonization of organic matter, however, the porosity, pore volume, pore size, and pore connectivity of Niutitang shales is obviously lower than that of Wufeng-Longmaxi shales. The natural fractures of Wufeng-Longmaxi shales are dominated by horizontal bedding fractures, and most of them are filled by calcite. By contrast, the high dip-angle fractures are more developed in the Niutitang shales. Especially, these fractures remain open in stages during the process of serious uplift and denudation movements. Thus, the seal conditions of the Niutitang shales are poor, which is further not conducive to the enrichment of shale gas. Our work also suggests that the exploration and development of highly over matured marine shales in southern China should follow the principle of “high to find low, and strong to find weak.”


2021 ◽  
Vol 9 ◽  
Author(s):  
Lingjie Yu ◽  
Keyu Liu ◽  
Ming Fan ◽  
Zhejun Pan

Pore connectivity is crucial for shale gas production. However, the three-dimensional (3D) characteristics and distribution of pore networks and, more fundamentally, the underlying role of different pore types on pore connectivity in shales are inadequately understood. By comparing the 3D pore connectivity derived from direct microstructural imaging of pores filled with Wood’s metal at a pressure corresponding to the finest accessible pore throat in the resolution ranges that may be achieved by X-ray micro-CT and SEM, it is possible to evaluate pore connectivity of different types of shales. The pore connectivity of three shales including a mixed mudstone, siliceous shale, and argillaceous shale from the Silurian Longmaxi Formations is investigated via combined broad ion beam (BIB) polishing, and SEM and X-ray micro-CT imaging after Wood’s metal injection at a pressure up to 380 MPa. The three shales show significant differences in pore connectivity. The mixed mudstone shows excellent pore connectivity in the matrix; the siliceous shale shows an overall poor connectivity with only a small amount of OM (organic matter) pores immediately adjacent to microfractures displaying interconnectivity, while the pores in the argillaceous shale, dominated by plate-like clay pores, are largely not interconnected.


2021 ◽  
Vol 54 (9) ◽  
pp. 1400-1409
Author(s):  
T. G. Kalnin ◽  
D. A. Ivonin ◽  
K. N. Abrosimov ◽  
E. A. Grachev ◽  
N. V. Sorokina

Abstract The technique of numerical analysis of three-dimensional tomographic images of the pore space of soil objects has been used in this paper. It applies methods of integral geometry, topology and morphological analysis. To characterize quantitatively the transformation of the pore space structure, tomographic images of four undisturbed soils were analyzed, i.e., heavy loamy agro-gray soil (Retic Phaeozem), agromineral (Sapric Rheic Mineralic Histosols), and hypnum (brown moss Sapric Rheic Histosols) peat soils in dry and wet conditions. For samples of the subplow horizon in agro-gray soil, a decrease in both Betty numbers was observed on wetting, where the zero number (b0) stands for the amount of topologically simple closed pores, and the first number (b1) indicates a decrease in pore connectivity, which varies in a narrower range of pore sizes as compared to b0. When a sample of agromineral peat soil is moistened, the Euler–Poincaré characteristic is negative ​in the pore range of 0.1–0.16 mm, which points to the predominating complicated branched structure of the pore space and high pore connectivity. When hypnum moss is saturated, a lot of tunnel pores get narrower (“collapse”), and the connectivity decreases due to the structural specifics of long-stemmed plant residues. The number of pores and connections between them in peat soils is an order of magnitude higher than those in the subplow horizon A of the agro-gray soil. The provided quantitative changes in the considered parameters of tomographic images of the soil pore space confirm the possibility of applying them for estimating the transformation of the pore space in soils.


2021 ◽  
Vol 5 (3) ◽  
pp. 55
Author(s):  
Siddharth Gautam ◽  
David R. Cole

Adsorption of fluids in nanoporous materials is important for several applications including gas storage and catalysis. The pore network in natural, as well as engineered, materials can exhibit different degrees of connectivity between pores. While this might have important implications for the sorption of fluids, the effects of pore connectivity are seldom addressed in the studies of fluid sorption. We have carried out Monte Carlo simulations of the sorption of ethane and CO2 in silicalite, a nanoporous material characterized by sub-nanometer pores of different geometries (straight and zigzag channel like pores), with varied degrees of pore connectivity. The variation in pore connectivity is achieved by selectively blocking some pores by loading them with methane molecules that are treated as a part of the rigid nanoporous matrix in the simulations. Normalized to the pore space available for adsorption, the magnitude of sorption increases with a decrease in pore connectivity. The increased adsorption in the systems where pore connections are removed by blocking them is because of additional, albeit weaker, adsorption sites provided by the blocker molecules. By selectively blocking all straight or zigzag channels, we find differences in the absorption behavior of guest molecules in these channels.


Author(s):  
Kristof Dorau ◽  
Daniel Uteau ◽  
Maren Hövels ◽  
Stephan Peth ◽  
Tim Mansfeldt

Sign in / Sign up

Export Citation Format

Share Document