scholarly journals High-Resolution Micro-Continuum Approach to Model Matrix-Fracture Interaction and Fluid Leakage

2021 ◽  
Author(s):  
Xupeng He ◽  
Marwa Alsinan ◽  
Hyung Kwak ◽  
Hussein Hoteit

Abstract Understanding the fundamental mechanism of fracture-matrix fluid exchange is crucial for the modeling of fractured reservoirs. Traditionally, high-resolution simulations for flow in fractures often neglect the matrix-fracture leakage influence on the fracture hydraulic properties, i.e., assuming impermeable fracture walls. This work introduces a micro-continuum approach to capture the matrix-fracture leakage interaction and its effect on the rock fractures’ hydraulic properties. Because of the multiscale nature of fractured media, full physics Navier-Stokes (NS) representation everywhere in the whole domain is not feasible. We thus employ NS equations to describe the flow in the fracture, and Darcy’s law to model the flow in the surrounding porous rocks. Such hybrid modeling is achieved using the extended Darcy-Brinkman-Stokes (DBS) equation. With this approach, a unified conservation equation for flow in both media is applied by choosing appropriate parameters (e.g., porosity and permeability) for the corresponding domains. We apply an accurate Mixed Finite Element approach to solve the extended DBS equation. Various sensitivity analyses are conducted to explore the leakage effects on the fracture hydraulic properties by varying surrounding matrix permeability, fracture roughness, and Reynolds number (Re). Streamline profiles show the presence of back-flow phenomena, where in-flow and out-flow are possible between the matrix and the fractures. Further, zones of stagnant (eddy) flow are observed around locations with large asperities of sharp corners under high Re conditions. Numerical results show the significant effects of roughness and inertia on flow predictions in fractures for both impermeable and leaky wall cases. Besides, the side-leakage effect can create non-uniform flow behavior within the fracture that may differ significantly from the case with impermeable wall conditions. And this matrix-fracture leakage influence on hydraulic properties of rock fractures matters especially for cases with high matrix permeability, high fracture roughness, and low Re values. In summary, we present a high-resolution micro-continuum approach to explore the flow exchange behavior between the fracture and rock matrix, and further investigate the static and dynamic effects, including variable Reynold numbers, mimicking flow near and away from the wellbore. The approach and results provide significant insights into the flow of fluids through fractures within permeable rocks and can be readily applied in field-scale reservoir simulations.

Energies ◽  
2020 ◽  
Vol 13 (12) ◽  
pp. 3070
Author(s):  
Renjie Shao ◽  
Yuan Di ◽  
Dawei Wu ◽  
Yu-Shu Wu

The embedded discrete fracture model (EDFM), among different flow simulation models, achieves a good balance between efficiency and accuracy. In the EDFM, micro-scale fractures that cannot be characterized individually need to be homogenized into the matrix, which may bring anisotropy into the matrix. However, the simplified matrix–fracture fluid exchange assumption makes it difficult for EDFM to address the anisotropic flow. In this paper, an integrally embedded discrete fracture model (iEDFM) suitable for anisotropic formations is proposed. Structured mesh is employed for the anisotropic matrix, and the fracture element, which consists of a group of connected fractures, is integrally embedded in the matrix grid. An analytic pressure distribution is derived for the point source in anisotropic formation expressed by permeability tensor, and applied to the matrix–fracture transmissibility calculation. Two case studies were conducted and compared with the analytic solution or fine grid result to demonstrate the advantage and applicability of iEDFM to address anisotropic formation. In addition, a two-phase flow example with a reported dataset was studied to analyze the effect of the matrix anisotropy on the simulation result, which also showed the feasibility of iEDFM to address anisotropic formation with complex fracture networks.


Foods ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 553
Author(s):  
Lorena Manzano-Sánchez ◽  
José Antonio Martínez-Martínez ◽  
Irene Domínguez ◽  
José Luis Martínez Vidal ◽  
Antonia Garrido Frenich ◽  
...  

Nowadays, highly polar pesticides are not included in multiresidue methods due to their physico-chemical characteristics and therefore, specific analytical methodologies are required for their analysis. Laboratories are still looking for a pluri-residue method that encompasses the largest number of polar pesticides. The aim of this work was the simultaneous determination of ethephon, 2-hydroxyethylphosphonic acid (HEPA), fosetyl aluminum, glyphosate, aminomethylphosphonic acid (AMPA), N-acetyl-glyphosate and N-acetyl-AMPA in tomatoes, oranges, aubergines and grapes. For that purpose, an ultra high performance liquid chromatography (UHPLC) coupled to a high resolution single mass spectrometer Orbitrap-MS were used. Different stationary phases were evaluated for chromatographic separation, and among them, the stationary phase Torus DEA provided the best separation of the selected compounds. The QuPPe method was used for the extraction of the analytes, but slight modifications were needed depending on the matrix. The developed method was validated, observing matrix effect in all matrices. Intra- and inter-day precision were estimated, and relative standard deviation were lower than 19%. Recoveries were satisfactory, and mean values ranged from 70% to 110%. Limits of quantification were between 25 and 100 µg kg−1. Finally, the analytical method was applied to different fruits and vegetables (oranges, tomatoes, aubergines and grapes).


2021 ◽  
pp. 9-19
Author(s):  
P. A. Boronin ◽  
N. V. Gilmanova ◽  
N. Yu. Moskalenko

The object of research in this article is the productive deposits of the pre-Jurassic complex. The pre-Jurassic complex is of great interest, this is an unconventional reservoir with a complex structure and developed fractured zones. High flow rates cannot be determined by the rock matrix, since the matrix permeability coefficient is on average 2−3 md. In this regard, there is the problem of separation of fractured intervals according to a standard set of well testing.


2021 ◽  
Author(s):  
Yue Shi ◽  
Kishore Mohanty ◽  
Manmath Panda

Abstract Oil-wetness and heterogeneity (i.e., existence of low and high permeability regions) are two main factors that result in low oil recovery by waterflood in carbonate reservoirs. The injected water is likely to flow through high permeability regions and bypass the oil in low permeability matrix. In this study, systematic coreflood tests were carried out in both "homogeneous" cores and "heterogeneous" cores. The heterogeneous coreflood test was proposed to model the heterogeneity of carbonate reservoirs, bypassing in low-permeability matrix during waterfloods, and dynamic imbibition of surfactant into the low-permeability matrix. The results of homogeneous coreflood tests showed that both secondary-waterflood and secondary-surfactant flood can achieve high oil recovery (>50%) from relatively homogenous cores. A shut-in phase after the surfactant injection resulted in an additional oil recovery, which suggests enough time should be allowed while using surfactants for wettability alteration. The core with a higher extent of heterogeneity produced lower oil recovery to waterflood in the coreflood tests. Final oil recovery from the matrix depends on matrix permeability as well as the rock heterogeneity. The results of heterogeneous coreflood tests showed that a slow surfactant injection (dynamic imbibition) can significantly improve the oil recovery if the oil-wet reservoir is not well-swept.


2021 ◽  
Vol 25 (2) ◽  
pp. 98-109
Author(s):  
P. A. Otopkova ◽  
◽  
A. M. Potapov ◽  
A. I. Suchkov ◽  
A. D. Bulanov ◽  
...  

In order to study the isotopic effects in semiconductor materials, single crystals of high chemical and isotopic purity are required. The reliability of the obtained data on the magnitude and the direction of isotopic shifts depends on the accuracy of determining the concentration of all stable isotopes. In the isotopic analysis of enriched “silicon-28” with a high degree of enrichment (> 99.99%), it is necessary to determine the impurities of 29Si and 30Si isotopes at the level of 10-3 ¸ 10-5 at. %. At this concentration level, these isotopes can be considered as impurities. It is difficult to achieve high measurement accuracy with simultaneous registration of the main and “impurity” isotopes in such a wide range of concentrations. The registration of analytical signals of silicon isotopes must be carried out in the solutions with different matrix concentrations. The use of the solutions with the high concentration of the matrix element requires the introduction of corrections for matrix noise and the drift of the instrument sensitivity during the measurement. It is possible to reduce the influence of the irreversible non-spectral interference and sensitivity drift by using the method of internal standardization. The inconsistency of the literature data on the selection criteria for the internal standard required studying the behavior of the signals of the “candidates for the internal standard” for the ELEMENT 2 single-collector high-resolution inductively coupled plasma mass spectrometer on the matrix element concentration and the nature of the solvent, as well as on the solution nebulizing time. Accounting for the irreversible non-spectral matrix noise and instrumental drift in isotopic analysis of enriched “silicon-28” and initial 28SiF4 by inductively coupled plasma mass spectrometry had allowed us to reduce by 3-5 times the random component and by more than an order of magnitude the systematic component of the measurement error in comparison with the external standard method. This made it possible to carry out, with sufficient accuracy, the operational control of the isotopic composition of enriched “silicon-28”, both in the form of silicon tetrafluoride and polycrystalline silicon obtained from it, using a single serial device in the range of isotopic concentrations 0.0001–99.999%.


2021 ◽  
Vol 922 (2) ◽  
pp. 256
Author(s):  
Giulia Perotti ◽  
Henning O. Sørensen ◽  
Henning Haack ◽  
Anja C. Andersen ◽  
Dario Ferreira Sanchez ◽  
...  

Abstract Protoplanetary disks are dust- and gas-rich structures surrounding protostars. Depending on the distance from the protostar, this dust is thermally processed to different degrees and accreted to form bodies of varying chemical compositions. The primordial accretion processes occurring in the early protoplanetary disk such as chondrule formation and metal segregation are not well understood. One way to constrain them is to study the morphology and composition of forsteritic grains from the matrix of carbonaceous chondrites. Here, we present high-resolution ptychographic X-ray nanotomography and multimodal chemical microtomography (X-ray diffraction and X-ray fluorescence) to reveal the early history of forsteritic grains extracted from the matrix of the Murchison CM2.5 chondrite. The 3D electron density maps revealed, at unprecedented resolution (64 nm), spherical inclusions containing Fe–Ni, very little silica-rich glass and void caps (i.e., volumes where the electron density is consistent with conditions close to vacuum) trapped in forsterite. The presence of the voids along with the overall composition, petrological textures, and shrinkage calculations is consistent with the grains experiencing one or more heating events with peak temperatures close to the melting point of forsterite (∼2100 K), and subsequently cooled and contracted, in agreement with chondrule-forming conditions.


Author(s):  
W. J. Langner

Abstract The paper follows studies on simulation of three-dimensional mechanical dynamic systems with the help of sparse matrix and stiff integration numerical algorithms. For sensitivity analyses and the application of numerical optimization procedures it is substantial to calculate the effect of design parameters on the system behaviour by means of derivatives of state variables with respect to the design parameters. For static and quasi static analyses the computation of these derivatives from the governing equations leads to a linear equation system. The matrix of this set of linear equations shows to be the Jacobian matrix required in the numerical integration process solving the system of governing equations for the mechanical system. Thus the factorization of the matrix perfomed by the numerical integration algorithm can be reused solving the linear equation system for the state variable sensitivities. Some example demonstrate the simplicity of building the right hand sides of the linear equation system. Also it is demonstrated that the procedure proposed neatly fits into a modular concept for simulation model building and analysis.


2021 ◽  
Author(s):  
Ahmed AlJanahi ◽  
Feras Altawash ◽  
Hassan AlMannai ◽  
Sayed Abdelredy ◽  
Hamed Al Ghadhban ◽  
...  

Abstract Geomechanics play an important role in stimulation design, especially in complex tight reservoirs with very low matrix permeability. Robust modelling of stresses along with rock mechanical properties helps to identify the stress barriers which are crucial for optimum stimulation design and proppant allocation. Complex modeling and calibration workflow showcased the value of geomechanical analysis in a large stimulation project in the Ostracod-Magwa reservoir, a complicated shallow carbonate reservoir in the Bahrain Field. For the initial model, regional average rock properties and minimum stress values from earlier frack campaigns were considered. During campaign progression, advanced cross dipole sonic measurements of the new wells were incorporated in the geomechanical modeling which provided rock properties and stresses with improved confidence. The outputs from wireline-conveyed microfrac tests and the fracturing treatments were also considered for calibration of the minimum horizontal stress and breakdown pressure. The porepressure variability was established with the measured formation pressure data. The geomechanically derived horizontal stresses were used as input for the frack-design. Independent fracture geometry measurements were run to validate the model. The poro-elastic horizontal strain approach was taken to model the horizontal stresses, which shows better variability of the stress profile depending on the elastic rock properties. The study shows variable depletion in porepressure across the field as well as within different reservoir layers. The Ostracod reservoir is more depleted than Magwa, with porepressure values lower than hydrostatic (∼7 ppg). The B3 shale layer in between the Magwa and Ostracod reservoirs is a competent barrier with 1200-1500psi closure pressure. The closure pressures in the Ostracod and Magwa vary from 1000-1500psi and 1100-1600psi, respectively. There is a gradual increasing trend observed in closure pressure in Magwa with depth, but no such trend is apparent in the shallower Ostracod formation. High resolution stress profiles help to identify the barriers within each reservoir to place horizontal wells and quantify the magnitude of hydraulic fracture stress barriers along horizontal wells. The geomechanical model served as a key part of the fracturing optimization workflow, resulting in more than double increase in wells productivity compared to previous stimulation campaigns. The study also helped to optimize the selection of the clusters depth of hydraulic fracturing stages in horizontal wells. The poroelastic horizontal strain approach to constrain horizontal stresses from cross dipole sonic provides better variability in the stress profile to ultimately yield high resolution. This model, calibrated with actual frac data, is crucial for stimulation design in complex reservoirs with very low matrix permeability. The geomechanical model serves as one of the few for shallow carbonates rock in the Middle East region and can be of significant importance to many other shallow projects in the region.


SPE Journal ◽  
1900 ◽  
Vol 25 (02) ◽  
pp. 867-882
Author(s):  
Pengfei Dong ◽  
Maura Puerto ◽  
Guoqing Jian ◽  
Kun Ma ◽  
Khalid Mateen ◽  
...  

Summary The high formation heterogeneity in naturally fractured limestone reservoirs requires mobility control agents to improve sweep efficiency and boost oil recovery. However, typical mobility control agents, such as polymers and gels, are impractical in tight sub-10-md formations due to potential plugging issues. The objective of this study is to demonstrate the feasibility of a low-interfacial-tension (low-IFT) foam process in fractured low-permeability limestone reservoirs and to investigate relevant geochemical interactions. The low-IFT foam process was investigated through coreflood experiments in homogeneous and fractured oil-wet cores with sub-10-md matrix permeability. The performance of a low-IFT foaming formulation and a well-known standard foamer [alpha olefin sulfonate (AOS) C14-16] were compared in terms of the efficiency of oil recovery. The effluent ionic concentrations were measured to understand how the geochemical properties of limestone influenced the low-IFT foam process. Aqueous stability and phase behavior tests with crushed core materials and brines containing various divalent ion concentrations were conducted to interpret the observations in the coreflood experiments. Low-IFT foam process can achieve significant incremental oil recovery in fractured oil-wet limestone reservoirs with sub-10-md matrix permeability. Low-IFT foam flooding in a fractured oil-wet limestone core with 5-md matrix permeability achieved 64% incremental oil recovery compared to waterflooding. In this process, because of the significantly lower capillary entry pressure for surfactant solution compared to gas, the foam primarily diverted surfactant solution from the fracture into the matrix. This selective diversion effect resulted in surfactant or weak foam flooding in the tight matrix and hence improved the invading fluid flow in the matrix. Meanwhile, the low-IFT property of the foaming formulation mobilized the remaining oil in the matrix. This oil mobilization effect of the low-IFT formulation achieved lower remaining oil saturation in the swept zones compared with the formulation lacking low-IFT property with oil. The limestone geochemical instability caused additional challenges for the low-IFT foam process in limestone reservoirs compared to dolomite reservoirs. The reactions of calcite with injected fluids—such as mineral dissolution and the exchange of calcium and magnesium—were found to increase the Ca2+ concentration in the produced fluids. Because the low-IFT foam process is sensitive to brine salinity, the additional Ca2+ may cause potential surfactant precipitation and unfavorable over-optimum conditions. It, therefore, may cause injectivity and phase-trapping issues especially in the homogeneous limestone. Results in this work demonstrated that despite the challenges associated with limestone dissolution, the low-IFT foam process can remarkably extend chemical enhanced oil recovery (EOR) in fractured oil-wet tight reservoirs with matrix permeability as low as 5 md.


Sensors ◽  
2019 ◽  
Vol 19 (2) ◽  
pp. 226 ◽  
Author(s):  
Long Peng ◽  
Chenggao Luo ◽  
Bin Deng ◽  
Hongqiang Wang ◽  
Yuliang Qin ◽  
...  

In this paper, we propose a phaseless terahertz coded-aperture imaging (PTCAI) method by using a single incoherent detector or an incoherent detection array. We at first analyze and model the system architecture, derive the matrix imaging equation, and then study the phase retrieval techniques to reconstruct the original target with high resolution. Numerical experiments are performed and the results show that the proposed method can significantly reduce the system complexity in the receiving process while maintaining high resolution imaging capability. Furthermore, the approach of using incoherent detection array instead of single detector is capable of decreasing the encoding and sampling times, and therefore helps to improve the imaging frame rate. In our future research, the method proposed in this paper will be experimentally tested and validated, and high-speed PTCAI at nearly real-time frame rates will be the main work.


Sign in / Sign up

Export Citation Format

Share Document