Integrated Hydraulic Fracture Geometry Evaluation Based on Pre-Cambrian Tight Silicylate Reservoir in South Oman Salt Basin

2022 ◽  
Author(s):  
Dmitrii Smirnov ◽  
Omar AL Isaee ◽  
Alexey Moiseenkov ◽  
Abdullah Al Hadhrami ◽  
Hilal Shabibi ◽  
...  

Abstract Pre-Cambrian South Oman tight silicilyte reservoirs are very challenging for the development due to poor permeability less than 0.1 mD and laminated texture. Successful hydraulic fracturing is a key for the long commercial production. One of the main parameter for frac planning and optimization is fracture geometry. The objective of this study was summarizing results comparison from different logging methods and recommended best practices for logging program targeting fracture geometry evaluation. The novel method in the region for hydraulic fracture height and orientation evaluation is cross-dipole cased hole acoustic logging. The method allows to evaluate fracture geometry based on the acoustic anisotropy changes after frac operations in the near wellbore area. The memory sonic log combined with the Gyro was acquired before and after frac operations in the cased hole. The acoustic data was compared with Spectral Noise log, Chemical and Radioactive tracers, Production Logging and pre-frac model. Extensive logging program allow to complete integrated evaluation, define methods limitations and advantages, summarize best practices and optimum logging program for the future wells. The challenges in combining memory cross-dipole sonic log and gyro in cased hole were effectively resolved. The acoustic anisotropy analysis successfully confirms stresses and predominant hydraulic fractures orientation. Fracture height was confirmed based on results from different logging methods. Tracers are well known method for the fracture height evaluation after hydraulic frac operations. The Spectral Noise log is perfect tool to evaluate hydraulically active fracture height in the near wellbore area. The combination of cased hole acoustic and noise logging methods is a powerful complex for hydraulic fracture geometry evaluation. The main limitations and challenges for sonic log are cement bond quality and hole conditions after frac operations. Noise log has limited depth of investigation. However, in combination with production and temperature logging provides reliable fit for purpose capabilities. The abilities of sonic anisotropy analysis for fracture height and hydraulic fracture orientation were confirmed. The optimum logging program for fracture geometry evaluation was defined and recommended for replication in projects were fracture geometry evaluation is required for hydraulic fracturing optimization.

SPE Journal ◽  
2019 ◽  
Vol 24 (05) ◽  
pp. 2292-2307 ◽  
Author(s):  
Jizhou Tang ◽  
Kan Wu ◽  
Lihua Zuo ◽  
Lizhi Xiao ◽  
Sijie Sun ◽  
...  

Summary Weak bedding planes (BPs) that exist in many tight oil formations and shale–gas formations might strongly affect fracture–height growth during hydraulic–fracturing treatment. Few of the hydraulic–fracture–propagation models developed for unconventional reservoirs are capable of quantitatively estimating the fracture–height containment or predicting the fracture geometry under the influence of multiple BPs. In this paper, we introduce a coupled 3D hydraulic–fracture–propagation model considering the effects of BPs. In this model, a fully 3D displacement–discontinuity method (3D DDM) is used to model the rock deformation. The advantage of this approach is that it addresses both the mechanical interaction between hydraulic fractures and weak BPs in 3D space and the physical mechanism of slippage along weak BPs. Fluid flow governed by a finite–difference methodology considers the flow in both vertical fractures and opening BPs. An iterative algorithm is used to couple fluid flow and rock deformation. Comparison between the developed model and the Perkins–Kern–Nordgren (PKN) model showed good agreement. I–shaped fracture geometry and crossing–shaped fracture geometry were analyzed in this paper. From numerical investigations, we found that BPs cannot be opened if the difference between overburden stress and minimum horizontal stress is large and only shear displacements exist along the BPs, which damage the planes and thus greatly amplify their hydraulic conductivity. Moreover, sensitivity studies investigate the impact on fracture propagation of parameters such as pumping rate (PR), fluid viscosity, and Young's modulus (YM). We investigated the fracture width near the junction between a vertical fracture and the BPs, the latter including the tensile opening of BPs and shear–displacement discontinuities (SDDs) along them. SDDs along BPs increase at the beginning and then decrease at a distance from the junction. The width near the junctions, the opening of BPs, and SDDs along the planes are directly proportional to PR. Because viscosity increases, the width at a junction increases as do the SDDs. YM greatly influences the opening of BPs at a junction and the SDDs along the BPs. This model estimates the fracture–width distribution and the SDDs along the BPs near junctions between the fracture tip and BPs and enables the assessment of the PR required to ensure that the fracture width at junctions and along intersected BPs is sufficient for proppant transport.


2021 ◽  
pp. 014459872198899
Author(s):  
Weiyong Lu ◽  
Changchun He

Directional rupture is one of the most important and most common problems related to rock breaking. The goal of directional rock breaking can be effectively achieved via multi-hole linear co-directional hydraulic fracturing. In this paper, the XSite software was utilized to verify the experimental results of multi-hole linear co-directional hydraulic fracturing., and its basic law is studied. The results indicate that the process of multi-hole linear co-directional hydraulic fracturing can be divided into four stages: water injection boost, hydraulic fracture initiation, and the unstable and stable propagation of hydraulic fracture. The stable expansion stage lasts longer and produces more microcracks than the unstable expansion stage. Due to the existence of the borehole-sealing device, the three-dimensional hydraulic fracture first initiates and expands along the axial direction in the bare borehole section, then extends along the axial direction in the non-bare hole section and finally expands along the axial direction in the rock mass without the borehole. The network formed by hydraulic fracture in rock is not a pure plane, but rather a curved spatial surface. The curved spatial surface passes through both the centre of the borehole and the axial direction relative to the borehole. Due to the boundary effect, the curved spatial surface goes toward the plane in which the maximum principal stress occurs. The local ground stress field is changed due to the initiation and propagation of hydraulic fractures. The propagation direction of the fractures between the fracturing boreholes will be deflected. A fracture propagation pressure that is greater than the minimum principle stress and a tension field that is induced in the leading edge of the fracture end, will aid to fracture intersection; as a result, the possibility of connecting the boreholes will increase.


2015 ◽  
Author(s):  
Manhal Sirat ◽  
Mujahed Ahmed ◽  
Xing Zhang

Abstract In-situ stress state plays an important role in controlling fracture growth and containment in hydraulic fracturing managements. It is evident that the mechanical properties, existing stress regime and the natural fracture network of its reservoir rocks and the surrounding formations mainly control the geometry, size and containments of produced hydraulic fractures. Furthermore, the three principal in situ stresses' axes swap directions and magnitudes at different depths giving rise to identifying different mechanical bedrocks with corresponding stress regimes at different depths. Hence predicting the hydro-fractures can be theoretically achieved once all the above data are available. This is particularly difficult in unconventional and tight carbonate reservoirs, where heterogeneity and highly stress variation, in terms of magnitude and orientation, are expected. To optimize the field development plan (FDP) of a tight carbonate gas reservoir in Abu Dhabi, 1D Mechanical Earth Models (MEMs), involving generating the three principal in-situ stresses' profiles and mechanical property characterization with depth, have been constructed for four vertical wells. The results reveal the swap of stress magnitudes at different mechanical layers, which controls the dimension and orientation of the produced hydro-fractures. Predicted containment of the Hydro-fractures within the specific zones is likely with inevitable high uncertainty when the stress contrast between Sv, SHmax with Shmin respectively as well as Young's modulus and Poisson's Ratio variations cannot be estimated accurately. The uncertainty associated with this analysis is mainly related to the lacking of the calibration of the stress profiles of the 1D MEMs with minifrac and/or XLOT data, and both mechanical and elastic properties with rock mechanic testing results. This study investigates the uncertainty in predicting hydraulic fracture containment due to lacking such calibration, which highlights that a complete suite of data, including calibration of 1D MEMs, is crucial in hydraulic fracture treatment.


SPE Journal ◽  
2019 ◽  
Vol 24 (05) ◽  
pp. 2148-2162 ◽  
Author(s):  
Pengcheng Fu ◽  
Jixiang Huang ◽  
Randolph R. Settgast ◽  
Joseph P. Morris ◽  
Frederick J. Ryerson

Summary The height growth of a hydraulic fracture is known to be affected by many factors that are related to the layered structure of sedimentary rocks. Although these factors are often used to qualitatively explain why hydraulic fractures usually have well–bounded height growth, most of them cannot be directly and quantitatively characterized for a given reservoir to enable a priori prediction of fracture–height growth. In this work, we study the role of the “roughness” of in–situ–stress profiles, in particular alternating low and high stress among rock layers, in determining the tendency of a hydraulic fracture to propagate horizontally vs. vertically. We found that a hydraulic fracture propagates horizontally in low–stress layers ahead of neighboring high–stress layers. Under such a configuration, a fracture–mechanics principle dictates that the net pressure required for horizontal growth of high–stress layers within the current fracture height is significantly lower than that required for additional vertical growth across rock layers. Without explicit consideration of the stress–roughness profile, the system behaves as if the rock is tougher against vertical propagation than it is against horizontal fracture propagation. We developed a simple relationship between the apparent differential rock toughness and characteristics of the stress roughness that induce equivalent overall fracture shapes. This relationship enables existing hydraulic–fracture models to represent the effects of rough in–situ stress on fracture growth without directly representing the fine–resolution rough–stress profiles.


1982 ◽  
Vol 22 (03) ◽  
pp. 321-332 ◽  
Author(s):  
M.E. Hanson ◽  
G.D. Anderson ◽  
R.J. Shaffer ◽  
L.D. Thorson

Abstract We are conducting a U.S. DOE-funded research program aimed at understanding the hydraulic fracturing process, especially those phenomena and parameters that strongly affect or control fracture geometry. Our theoretical and experimental studies consistently confirm the well-known fact that in-situ stress has a primary effect on fracture geometry, and that fractures propagate perpendicular to the least principal stress. In addition, we find that frictional interfaces in reservoirs can affect fracturing. We also have quantified some effects on fracture geometry caused by frictional slippage along interfaces. We found that variation of friction along an interface can result in abrupt steps in the fracture path. These effects have been seen in the mineback of emplaced fractures and are demonstrated both theoretically and in the laboratory. Further experiments and calculations indicate possible control of fracture height by vertical change in horizontal stresses. Preliminary results from an analysis of fluid flow in small apertures are discussed also. Introduction Hydraulic fracturing and massive hydraulic fracturing (MHF) are the primary candidates for stimulating production from tight gas reservoirs. MHF can provide large drainage surfaces to produce gas from the low- permeability formation if the fracture surfaces remain in the productive parts of the reservoir. To determine whether it is possibleto contain these fractures in the productive formations andto design the treatment to accomplish this requires a much broader knowledge of the hydraulic fracturing process. Identification of the parameters controlling fracture geometry and the application of this information in designing and performing the hydraulic stimulation treatment is a principal technical problem. Additionally, current measurement technology may not be adequate to provide the required data. and new techniques may have to be devised. Lawrence Livermore Natl. Laboratory has been conducting a DOE-funded research program whose ultimate goal is to develop models that predict created hydraulic fracture geometry within the reservoir. Our approach has been to analyze the phenomenology of the fracturing process to son out and identify those parameters influencing hydraulic fracture geometry. Subsequent model development will incorporate this information. Current theoretical and stimulation design models are based primarily on conservation of mass and provide little insight into the fracturing process. Fracture geometry is implied in the application of these models. Additionally, pressure and flow initiation in the fractures and their interjection with the fracturing process is not predicted adequately with these models. We have reported previously on some rock-mechanics aspects of the fracturing process. For example, we have studied, theoretically and experimentally, pressurized fracture propagation in the neighborhood of material interfaces. Results of interface studies showed that natural fractures in the interfacial region negate any barrier effect when the fracture is propagating from a lower modulus material toward a higher modulus material. On the other hand, some fracture containment could occur when the fracture is propagating from a higher modulus into a lower modulus material. Effect of moduli changes on the in-situ stress field have to be taken into consideration to evaluate fracture containment by material interfaces. Some preliminary analyses have been performed to evaluate how stress changes when material properties change, but we have not evaluated this problem fully. SPEJ P. 321^


SPE Journal ◽  
2018 ◽  
Vol 24 (01) ◽  
pp. 302-318 ◽  
Author(s):  
Jixiang Huang ◽  
Joseph P. Morris ◽  
Pengcheng Fu ◽  
Randolph R. Settgast ◽  
Christopher S. Sherman ◽  
...  

Summary A fully coupled finite-element/finite-volume code is used to model 3D hydraulically driven fractures under the influence of strong vertical variations in closure stress interacting with natural fractures. Previously unknown 3D interaction mechanisms on fracture-height growth are revealed. Slipping of a natural fracture, triggered by elevated fluid pressure from an intersecting hydraulic fracture, can induce both increases and decreases of normal stress in the minimum-horizontal-stress direction, toward the center and tip of the natural fracture, respectively. Consequently, natural fractures are expected to be able to both encourage and inhibit the progress of hydraulic fractures propagating through stress barriers, depending on the relative locations between the intersecting fractures. Once the hydraulic fracture propagates above the stress barrier through the weakened segment near a favorably located natural fracture, a configuration consisting of two opposing fractures cuts the stress barrier from above and below. The fluid pressure required to break the stress barrier under such opposing-fracture configurations is substantially lower than that required by a fracture penetrating the same barrier from one side. Sensitivity studies of geologic conditions and operational parameters have also been performed to explore the feasibility of controlled fracture height. The interactions between hydraulic fractures, natural fractures, and geologic factors such as stress barriers in three dimensions are shown to be much more complex than in two dimensions. Although it is impossible to exhaust all the possible configurations, the ability of a 3D, fully coupled numerical model to naturally capture these processes is well-demonstrated.


2015 ◽  
Author(s):  
Mark W. McClure ◽  
Mohsen Babazadeh ◽  
Sogo Shiozawa ◽  
Jian Huang

Abstract We developed a hydraulic fracturing simulator that implicitly couples fluid flow with the stresses induced by fracture deformation in large, complex, three-dimensional discrete fracture networks. The simulator can describe propagation of hydraulic fractures and opening and shear stimulation of natural fractures. Fracture elements can open or slide, depending on their stress state, fluid pressure, and mechanical properties. Fracture sliding occurs in the direction of maximum resolved shear stress. Nonlinear empirical relations are used to relate normal stress, fracture opening, and fracture sliding to fracture aperture and transmissivity. Fluid leakoff is treated with a semianalytical one-dimensional leakoff model that accounts for changing pressure in the fracture over time. Fracture propagation is treated with linear elastic fracture mechanics. Non-Darcy pressure drop in the fractures due to high flow rate is simulated using Forchheimer's equation. A crossing criterion is implemented that predicts whether propagating hydraulic fractures will cross natural fractures or terminate against them, depending on orientation and stress anisotropy. Height containment of propagating hydraulic fractures between bedding layers can be modeled with a vertically heterogeneous stress field or by explicitly imposing hydraulic fracture height containment as a model assumption. The code is efficient enough to perform field-scale simulations of hydraulic fracturing with a discrete fracture network containing thousands of fractures, using only a single compute node. Limitations of the model are that all fractures must be vertical, the mechanical calculations assume a linearly elastic and homogeneous medium, proppant transport is not included, and the locations of potentially forming hydraulic fractures must be specified in advance. Simulations were performed of a single propagating hydraulic fracture with and without leakoff to validate the code against classical analytical solutions. Field-scale simulations were performed of hydraulic fracturing in a densely naturally fractured formation. The simulations demonstrate how interaction with natural fractures in the formation can help explain the high net pressures, relatively short fracture lengths, and broad regions of microseismicity that are often observed in the field during stimulation in low permeability formations, and which are not predicted by classical hydraulic fracturing models. Depending on input parameters, our simulations predicted a variety of stimulation behaviors, from long hydraulic fractures with minimal leakoff into surrounding fractures to broad regions of dense fracturing with a branching network of many natural and newly formed fractures.


2022 ◽  
Author(s):  
Azzan Al-Yaarubi ◽  
Sumaiya Al Bimani ◽  
Sataa Al Rahbi ◽  
Richard Leech ◽  
Dmitrii Smirnov ◽  
...  

Abstract Successful hydraulic fracturing is critical for hydrocarbon recovery from tight reservoirs. Fracture geometry is one essential quality indicator of the created fracture. The geometry provides information about the size of the created fracture and containment and verifies the pre-job modeling. Different techniques are applied to determine fracture geometry, and each has its own advantages and limitations. Due to its simplicity, the radioactive tracer log is commonly used to determine fracture placement and fracture height. Its main drawbacks include shallow depth of investigation, time dependency, and the requirement for multiple interventions for multistage fracturing operations. The crosswell microseismic technique probes a larger volume and it is potentially capable of providing fracture height, length, and orientation. Operational complexity and long processing turnaround time are the main challenges of this technique. Time-lapse shear slowness anisotropy analysis is an effective method to determine hydraulic facture height and orientation. In this technique, the shear slowness anisotropy is recorded before and after the fracture is created. The observed shear anisotropy difference indicates the intervals where the fractures were created, allowing these intervals lengths to be measured. Combining this analysis with gyroscopic data allows determining the fracture orientations. Compared to a tracer log, the differential casedhole sonic anisotropy (DCHSA) has a deeper depth of investigation, and it is time independent. Thus, the repeated log can be acquired at the end of the multistage fracturing operations. Compared to the microseismic technique, this new technique provides more precise fracture height and orientation. The new generation slim dipole sonic technology of 2.125-in. diameter extends the applicability of the DCHSA technique to smaller casing sizes. The shear differential method was applied to a vertical well that targeted the Athel formation in the south of the Sultanate of Oman. This formation is made of silicilyte and is characterized by very low permeability of about 0.01 md on average. Thus, hydraulic fracturing plays a critical role for the economic oil recovery in this reservoir. Aiming to achieve a better zonal contribution, the stimulation design was changed from a limited number of large fractures to an extensive multistage fracturing design in the subject well. Sixteen hydraulic fracturing stages were planned. The DCHSA was applied to provide accurate and efficient fracture geometry evaluation. The DCHSA accurately identified fracture intervals and their corresponding heights and orientations. This enabled effectively determining the created fracture quality and helped explain the responses of the production logs that were recorded during the well test. This study provided a foundation for the placement and completion design of the future wells in the subject reservoir. It particularly revealed adequate fracturing intervals and the optimum number of stages required to achieve optimum reservoir coverage and avoid vertical overlapping.


2021 ◽  
Author(s):  
Debotyam Maity ◽  
Jordan Ciezobka

Abstract In this case study, we apply a novel fracture imaging and interpretation workflow to take a systematic look at hydraulic fractures captured during thorugh fracture coring at the Hydraulic Fracturing Test Site (HFTS) in Midland Basin. Digital fracture maps rendered using high resolution 3D laser scans are analyzed for fracture morphology and roughness. Analysis of hydraulic fracture faces show that the roughness varies systematically in clusters with average cluster separation of approximately 20' along the core. While isolated smooth hydraulic fractures are observed in the dataset, very rough fractures are found to be accompanied by proximal smoother fractures. Roughness distribution also helps understand the effect of stresses on fracture distribution. Locally, fracture roughness seems to vary with fracture orientations indicating possible inter-fracture stress effects. At the scale of stage lengths however, we see evidence of inter-stage stress effects. We also observe fracture morphology being strongly driven by rock properties and changes in lithology. Identified proppant distribution along the cored interval is also correlated with roughness variations and we observe strong positive correlation between proppant concentrations and fracture roughness at the local scale. Finally, based on the observed distribution of hydraulic fracture properties, we propose a conceptual spatio-temporal model of fracture propagation which can help explain the hydraulic fracture roughness distribution and ties in other observations as well.


Sign in / Sign up

Export Citation Format

Share Document