Kedung Keris Full Well Stream Pipeline Fiber Optic Leak Detection System

2021 ◽  
Author(s):  
Cindy Chairunissa ◽  
Deny Kalfarosi Amanu ◽  
Grizki Astari ◽  
Eska Indrayana

Abstract Kedung Keris (KK) is a sour oil field based in Cepu Block, Indonesia. KK field was originally planned to have a processing facility with separate pipelines to deliver crude & produced water, while the gas was planned to be flared. To reduce cost, this concept was changed to a wellpad with full well stream pipeline with new technology of Fiber Optic Leak Detection Sensing System (LDSS) as a key enabler. The fiber optic LDSS functions by leveraging fiber optic cable attached to the pipeline to detect leak as well as intrusion to the pipeline's Right-of-Way through real-time analysis of physical characteristics of a leak and intrusion, such as changes in temperature, pressure, ground strain and acoustics. The implementation of LDSS, together with other safeguards built into the pipeline design, operations and maintenance, allowed the KK Project to eliminate the separation facility at KK wellpad and an additional water pipeline. It also reduces the flaring by billions of standard cubic feet of gas cumulative until end of PSC life as originally all gas planned to be flared. The change of KK Project concept altogether yielded tens of millions of US dollar gross cost savings (~30% of CAPEX + OPEX reduction) following the KK startup in late 2019. The installed LDSS proven to detect leak for up to few meters location accuracy and has intrusion detection capability. KK Project has pioneered the implementation of fiber optic leak detection system for Indonesia oil and gas companies. This work provided further insight to the utilization of such technology in full well stream pipeline where traditional leak detection system implementation will not be acceptable. Consecutively, full well stream pipeline deployment can lead to future CAPEX + OPEX efficiency in facility project design and operation, as well as flaring reduction opportunity.

Author(s):  
Alireda Aljaroudi ◽  
Faisal Khan ◽  
Ayhan Akinturk ◽  
Mahmoud Haddara

Leak Detection Systems play a major role in enhancing reliability and operability of oil and gas pipelines. They have the functional capabilities to detect, locate and quantify leaks before they can cause drastic effects to environment and operation. The performance of Leak Detection Systems is typically affected by three different failures that have severe consequences, namely, delayed detection, missed detection and false detection of a leak. These failures pose a financial burden on operating companies. Missed detection leads to oil spill and exposes operating companies to financial risk and destroyed image while false detection results in unnecessary deployment of personnel and equipment. To insure operation continuity and maintain safe environment, Leak Detection Systems should be assessed at regular basis. To fulfill this need, a probabilistic performance assessment scheme based on limit state approach for Fiber Optic Leak Detection System (LDS) has been developed. The inherent uncertainties associated with leak detection and reporting capabilities are modeled to determine the LDS detection failure probability that combines two failure events, missed detection and delayed detection. Moreover, the probability of false detection is derived in terms of the lowest detectable change, the threshold. These three parameters establish the basis for an overall assessment scheme that can be used at any time to provide an up to date assessment about the Leak Detection System. The results will serve as the basis for deciding the actions that need to be taken to upgrade, repair or replace the system components or the system as a whole. The proposed assessment scheme has been applied to a case study to demonstrate its usefulness and feasibility.


Author(s):  
Dimitris M. Chatzigeorgiou ◽  
Atia E. Khalifa ◽  
Kamal Youcef-Toumi ◽  
Rached Ben-Mansour

In most cases the deleterious effects associated with the occurrence of leak may present serious problems and therefore leaks must be quickly detected, located and repaired. The problem of leakage becomes even more serious when it is concerned with the vital supply of fresh water to the community. In addition to waste of resources, contaminants may infiltrate into the water supply. The possibility of environmental health disasters due to delay in detection of water pipeline leaks has spurred research into the development of methods for pipeline leak and contamination detection. Leaks in water pipes create acoustic emissions, which can be sensed to identify and localize leaks. Leak noise correlators and listening devices have been reported in the literature as successful approaches to leak detection but they have practical limitations in terms of cost, sensitivity, reliability and scalability. To overcome those limitations the development of an in-pipe traveling leak detection system is proposed. The development of such a system requires a clear understanding of acoustic signals generated from leaks and the study of the variation of those signals with different pipe loading conditions, leak sizes and surrounding media. This paper discusses those signals and evaluates the merits of an in-pipe-floating sensor.


2021 ◽  
Vol 877 (1) ◽  
pp. 012012
Author(s):  
Zahraa N. Mahbouba ◽  
Abdulkhalik K. Mahmood ◽  
Musa H. Alshammari

Abstract Oil and gas sectors generate large amounts of oily wastewater, which is called produced water. In which, it contains high concentrations of hazardous organic and inorganic pollutants. This paper attempts to evaluate the performance and quality of using a polyethersulfone ultrafiltration membrane (UFM) to treat the produced water of Al-Ahdab oil field (Wassit, Iraq). 8 rectangular flat sheets of polyethersulfone ultrafiltration membrane were used. The area of each is 60 cm2 and pore size about 15 nm used in the experimental work. Prepared UFM is characterized by determining the surface morphology by scanning electron microscopy (SEM). The result showed that the UFM indicated high removal efficiency in all parameters and especially oil and grease and total suspended solid but in general it still less than the requirement of water reuse. The results showed that, a combination of a conventional treatment method and UFM technology have higher efficiency than using UFM only.


2020 ◽  
Vol 25 (3) ◽  
pp. 340
Author(s):  
Mukarram Riaz ◽  
Ishtiaq Ahmad ◽  
Muhammad Nasir Khan ◽  
Muhammad Asim Mond ◽  
Amna Mir

2004 ◽  
Vol 43 (2) ◽  
pp. 278 ◽  
Author(s):  
Wuu-Wen Lin

2008 ◽  
Author(s):  
Alex A. Kazemi ◽  
John W. Goepp ◽  
David B. Larson ◽  
Mark E. Wuestling

Author(s):  
Hanan A. R. Akkar ◽  
Wael A. H. Hadi ◽  
Ibraheem H. Al-Dosari ◽  
Saadi M. Saadi ◽  
Aseel Ismael Ali

The problem of leak detection in water pipeline network can be solved by utilizing a wireless sensor network based an intelligent algorithm. A new novel denoising process is proposed in this work. A comparison study is established to evaluate the novel denoising method using many performance indices. Hardyrectified thresholding with universal threshold selection rule shows the best obtained results among the utilized thresholding methods in the work with Enhanced signal to noise ratio (SNR) = 10.38 and normalized mean squared error (NMSE) = 0.1344. Machine learning methods are used to create models that simulate a pipeline leak detection system. A combined feature vector is utilized using wavelet and statistical factors to improve the proposed system performance.


2014 ◽  
Vol 699 ◽  
pp. 891-896 ◽  
Author(s):  
Mohamad Fani Sulaima ◽  
F. Abdullah ◽  
Wan Mohd Bukhari ◽  
Fara Ashikin Ali ◽  
M.N.M. Nasir ◽  
...  

Pipelines leaks normally begin at poor joints, corrosions and cracks, and slowly progress to a major leakage. Accidents, terror, sabotage, or theft are some of human factor of pipeline leak. The primary purpose of Pipeline leak detection systems (PLDS) is to assist pipeline operators in detecting and locating leaks earlier. PLDS systems provide an alarm and display other related data to the pipeline operators for their decision-making. It is also beneficial because PLDS can enhance their productivity by reduced downtime and inspection time. PLDS can be divided into internally based or computational modeling PLDS Systems and external hardware based PLDS. The purpose of this paper is to study the various types of leak detection systems based on internally systemtodefine a set of key criteria for evaluating the characteristics of this system and provide an evaluation method of leak detection technology as a guideline of choosing the appropriate system.


Sign in / Sign up

Export Citation Format

Share Document