Challenges and Achievements of Drilling Record MRC Wells for Appraising and Developing an Offshore Tight Carbonate

2021 ◽  
Author(s):  
Mohand Ahmed Alyan ◽  
Jamie Scott Duguid ◽  
Atif Shahzad ◽  
Amna Ahmed Alobeidli ◽  
Alunood Khalifa Al Suwaidi ◽  
...  

Abstract This paper describes the field development planning strategy for appraising and developing an offshore reservoir area via extended reach extra-long maximum reservoir contact laterals drilled from an artificial island. These single production and injection laterals are completed in excess of 20,000 ft on top of tens of thousands feet of drilled well path to reach the drain landing point. These laterals have a dual purpose, as in addition to reservoir appraisal, is to maximize the productivity and injectivity in an on-going development of a tight carbonate reservoir. The well planning process starts from a careful selection of reservoir target coordinates to maximize the oil in place being developed from the artificial island and to enable reservoir testing and appraisal. From this data, initial 3D well designs are generated based on island location and rig capability to ensure ability to drill and run completion to total depth. The generated well tracks are used in a reservoir model to forecast production uplifts and inflow/outflow profiling along laterals. A strategic drilling step-out program has been implemented to extend drilling reach and completion deployment incrementally along with a reservoir surveillance program. The program was designed with built-in risk mitigations for any potential drilling and completion issues. The implemented program has enabled drilling into new areas and testing the reservoir properties at a small incremental cost of extending horizontal laterals. This has led to huge cost savings versus a very expensive appraisal program from a wellhead platform that included drilling a new well in addition to topside facility changes and pipelines conversions along with associated maintenance costs. The data gathered from these wells have enabled reduction of geologic uncertainty and de-risking of future developments. As a result, the field development footprint of developed oil resources was extended by additional 20% without the requirement of building additional drilling structures. Additionally, there is a well count reduction via lateral extension thus leading to capital costs saving. There were initial challenges encountered during lower completion deployment but they were resolved successfully in subsequent wells. An outcome of this strategy was the successful drilling of maximum reservoir contact wells with tens of thousands feet of drilled well path to reach the drain landing point and then with single horizontal drains exceeding 20,000 ft. The drilled wells resulted in unprecedented records in UAE and globally in terms of well total length, horizontal drain length and completion deployment.

2021 ◽  
Author(s):  
Qasem Dashti ◽  
Saad Matar ◽  
Hanan Abdulrazzaq ◽  
Nouf Al-Shammari ◽  
Francy Franco ◽  
...  

Abstract A network modeling campaign for 15 surface gathering centers involving more than 1800 completion strings has helped to lay out different risks on the existing surface pipeline network facility and improved the screening of different business and action plans for the South East Kuwait (SEK) asset of Kuwait Oil Company. Well and network hydraulic models were created and calibrated to support engineers from field development, planning, and operations teams in evaluating the hydraulics of the production system for the identification of flow assurance problems and system optimization opportunities. Steady-state hydraulic models allowed the analysis of the integrated wells and surface network under multiple operational scenarios, providing an important input to improve the planning and decision-making process. The focus of this study was not only in obtaining an accurate representation of the physical dimension of well and surface network elements, but also in creating a tool that includes standard analytical workflows able to evaluate wells and surface network behavior, thus useful to provide insightful predictive capability and answering the business needs on maintaining oil production and controlling unwanted fluids such as water and gas. For this reason, the model needs to be flexible enough in covering different network operating conditions. With the hydraulic models, the evaluation and diagnosis of the asset for operational problems at well and network level will be faster and more effective, providing reliable solutions in the short- and long-terms. The hydraulic models enable engineers to investigate multiple scenarios to identify constraints and improve the operations performance and the planning process in SEK, with a focus on optimal operational parameters to establish effective wells drawdown, evaluation of artificial lifting requirements, optimal well segregation on gathering centers headers, identification of flow assurance problems and supporting production forecasts to ensure effective production management.


2003 ◽  
Vol 43 (1) ◽  
pp. 401
Author(s):  
R. Seggie ◽  
F. Jamal ◽  
A. Jones ◽  
M. Lennane ◽  
G. McFadzean ◽  
...  

The Legendre North and South Oil Fields (together referred to as the field) have been producing since May 2001 from high rate horizontal wells and had produced 18 MMBBL by end 2002. This represents about 45% of the proven and probable reserves for the field.Many pre-drill uncertainties remain. The exploration and development wells are located primarily along the crest of the structure, leaving significant gross rock volume uncertainty on the flanks of the field. Qualitative use of amplitudes provides some insight into the Legendre North Field but not the Legendre South Field where the imaging is poor. The development wells were drilled horizontally and did not intersect any fluid contacts.Early field life has brought some surprises, despite a rigorous assessment of uncertainty during the field development planning process. Higher than expected gas-oil ratios suggested a saturated oil with small primary gas caps, rather than the predicted under-saturated oil. Due to the larger than expected gas volumes, the gas reinjection system proved to have inadequate redundancy resulting in constrained production from the field. The pre-drill geological model has required significant changes to reflect the drilling and production results to date. The intra-field shales needed to be areally much smaller than predicted to explain well intersections and production performance. This is consistent with outcrop analogues.Surprises are common when an oil field is first developed and often continue to arise during secondary development phases. Learnings, in the context of subsurface uncertainty, from other oil fields in the greater North West Shelf are compared briefly to highlight the importance of managing uncertainty during field development planning. It is important to have design flexibility to enable facility adjustments to be made easily, early in field life.


2015 ◽  
Vol 55 (2) ◽  
pp. 406
Author(s):  
Vishnu Nair

Moving from conventional to unconventional gas project development requires a significant shift in approach. This presents challenges for operators making this transition, including standards and specifications being mis-matched to functional requirements, the need for robust surface and subsurface field development planning, lack of infrastructure, high construction and procurement costs and the scarcity of supply chain and logistics support. In their need to prove up sufficient reserves in time for downstream LNG plant operations, coal seam gas (CSG) players have neglected the development of appropriate standards, specifications and contracting and procurement strategies that consider how upstream costs can be minimised. This can impact project viability in a high-cost, low-productivity environment. The requirement of shale gas development for continual expansion also presents challenges compared to conventional project development. Adopting a factory approach can ensure a smooth and economic transition through the phase of continual shale gas production across the life of individual wells and through field expansion. Using case studies, this extended abstract describes how innovation can be applied across the gas-gathering development phase of unconventional projects to achieve significant cost savings. Key innovative opportunities include: Maximising modularise construction and operation to reduce the construction schedule and maximise onsite productivity Relocatable, interchangeable, standardised skid designs (design kit approach). Standard modules sized to maximise container volumes (and they minimise freight costs) Low-cost design Asian and Australian fabrication. Fit-for-purpose technology and packages to lower operating costs. Design and fabrication to minimise environmental impacts.


2020 ◽  
Vol 10 (3) ◽  
pp. 102-122
Author(s):  
Dr. Jalal A. Al-Sudani ◽  
Eng. Adnan N. Sajet ◽  
Eng. Jalal Ahmed ◽  
Eng. Mohamed Enad ◽  
Dr. Abdul-Hussain H. Al-Shibly ◽  
...  

Akkas gas field is the biggest natural gas field in Iraq that is located in the western desert area. The field contains around (9 BSCF) of approved gas reserve from the conventional rock source. This paper presents field development planning process combined with economic analysis comprises, the number of wells that yields in maximum net present value (NPV), the recovery factor and raw gas production rates for the total number of suggested wells that have been estimated, as well as the cumulative gas produced with time. The development plans were elaborated concerning different types of well geometries and operational constraints. Full comparison analysis for all presented plans regarding NPV, recovery factor, discounted cash flow versus production time, forecasted production rate, as well as forecasted cumulative production with time have been presented. Sensitivity analysis has been made to determine well and reservoir controlling parameters that leads for best operating field development plans. The study shows the effectiveness of horizontal well type compared with vertical wells; as well as, the effect of reservoir permeability on field development plans, the results show that the field could be operated at target plateau rates of (250, 500 and 750 MMSCF/D). It also shows the superior effect of stimulation processes in increasing the NPV and field recovery factor using less number of wells


2011 ◽  
Vol 14 (06) ◽  
pp. 687-701 ◽  
Author(s):  
B.A.. A. Stenger ◽  
S.A.. A. Al-Kendi ◽  
A.F.. F. Al-Ameri ◽  
A.B.. B. Al-Katheeri

Summary This paper reviewed the interpretation of repeat pressure-falloff (PFO) tests acquired in two vertical pattern injectors operating in a carbonate reservoir undergoing full-field development. Enhanced vertical-sweep conformance through phase mobility control in the presence of strong reservoir heterogeneity was the major expected benefit from an immiscible water-alternating-gas (WAG) displacement mechanism. PFO tests were carried out during the monophasic injection phase to determine well injectivity and reservoir properties, and were subsequently acquired at the end of each 3-month injection cycle. Analytical falloff-test interpretation relied on the use of the two zone radial composite model. Multiple falloff-test interpretations indicated that the two pattern vertical injectors behaved differently even though both had been fractured. The difference in behavior was linked to different perforated intervals and reservoir properties. Gas- and water-injection rates were showing differences between both pattern injectors as a consequence. Injected gas banks had a small inner radius and were almost undetectable at the end of the subsequent water cycle. Changes in the pressure-derivative slope at the end of the subsequent water-injection cycle indicated most likely the creation of an effective mixing zone of injected gas and water in the reservoir. Numerical finite-volume simulation was required to account for potential injected-fluid segregation and the heterogeneous multilayered nature of the reservoir. Repeat saturation logs acquired in observation wells monitored the saturation distribution away from the injection wells. Fluid saturations derived from the simulation model were showing a good agreement with the analytical results in general, although the need to account for gas trapping was confirmed. Eight planned development WAG injectors were repositioned as a consequence of WAG 1 and WAG 2 pattern performance.


Sign in / Sign up

Export Citation Format

Share Document