Dynamic Modeling of Invasion Damage and Impact on Production in Horizontal Wells

2007 ◽  
Vol 10 (04) ◽  
pp. 348-358 ◽  
Author(s):  
P.V. Suryanarayana ◽  
Zhan Wu ◽  
John Ramalho ◽  
Ronald Earl Himes

Summary We present a novel approach that combines dynamic reservoir simulations and special core tests to model the extent of invasive damage and its impact on flowback during production. A radially adaptive 3D microsimulator is used to estimate the extent and impact of filtrate invasion on near-wellbore saturation and reservoir pressure. Time-varying reservoir exposure is used to simulate the acts of drilling, tripping, completions, and workovers. Extremely fine, core-scale grids are used to capture saturation and pressure in the invasion zone. Special core tests using a specially designed core holder are conducted on the subject reservoir core. Test results are interpreted to obtain an estimate of endpoint relative permeabilities, dynamic mudcake effect on filtrate loss, and impact of solids invasion on return permeability. The saturation and pressure profiles from this model are then used as initial conditions in a sector-scale simulator to model flowback effects. Absolute-permeability damage is modeled using the core-test results as an incremental and hyperbolically recovering effect during flowback simulations. A near-wellbore fine-grid overlay is used to capture the near-wellbore effects from the microsimulator results. Several sensitivities, including initial reservoir pressure, degree of overbalance and drawdown, heterogeneity, anisotropy, and mudcake effect, are examined. Equivalent skin factors that vary with time and depth are developed to enable comparison with full-field simulations. A horizontal-well example is used to illustrate the results of the study. Results illustrate the stark and often underappreciated effects of invasive damage on flowback and, therefore, on production performance. The methods described in this work can be used in reservoir-specific studies to quantify formation damage and aid in the selection of mud types, drilling techniques, and remediation methods required to improve performance. It is hoped that this work bridges the typically empirical damage-characterization methods and dynamic reservoir simulations. Introduction Conventional (or overbalanced) drilling and workover operations invariably result in invasion of filtrate and solids present in the drilling and workover fluids. In most cases, the damage caused is limited to a near-wellbore region and can reduce productivity because of degradation in effective permeability. Permeability degradation from filtrate and solids invasion could be caused by a variety of damage mechanisms, such as blockage of pore throats by solids, reduction in relative permeability to hydrocarbons because of a change in saturation, phase blockage, and clay swelling in the formation. Damage can be harsher in horizontal wells and mature reservoirs because of greater overbalance and longer duration of exposure to drilling fluids. During drilling, mudcake buildup can reduce the invasion depth. The buildup and effectiveness of mudcake depend greatly upon the formulation of the mud, the type and heterogeneity of the formation being drilled, the maturity of the reservoir, and the degree of overbalance during drilling or workovers. In horizontal wells, mudcake effectiveness is compromised further because of repeated movement of the pipe against the mudcake, leading to several events of removal and re-laying of the mudcake. The effects of damage also can be alleviated by the use of remedial stimulation techniques such as acidizing and hydraulic fracturing. These may not always produce the desired results, particularly in horizontal wells in highly heterogeneous formations. Moreover, implementing some of these techniques in horizontal wells is difficult. Given the potential for reduced productivity from invasion, characterization of invasion-induced damage has been of interest for decades. However, the implicit presumption when dealing with invasion-induced damage has been that it can be mitigated (by appropriate selection of muds and formation of mudcake), bypassed (through perforations), or remedied (through stimulation and fracturing). Most prior damage-characterization work has been empirical in nature, relying on log and core tests to assess damage parameters. More recently, some authors also have attempted to quantify and model formation damage from the fundamental principles of deep-bed filtration, fines migration, and percolation theory. Dynamic modeling of invasion with numerical simulations has also received much-needed attention in recent times. However, much of the numerical invasion-modeling work in the literature has focused on the invasion only (typically because of interest in the impact of the invasion zone on log accuracy), and very few works have dealt with the impact of invasion on flowback during production. The problem of bridging empirical models and dynamic simulations to obtain reasonable estimates of the impact on production has been one of the challenges. In this work, we present a novel approach that combines dynamic reservoir simulations and special core tests to model the extent of invasive damage and its impact on flowback during production. The approach uses an ultrafine-grid numerical simulator to model invasion, with parameters calibrated to special core tests. Flowback is then modeled using a sector-scale simulator with near-wellbore fine gridding, with the initial saturation and pressure profiles as determined by the invasion model and parameters calibrated to the core tests. The experimental and numerical approaches are described in detail, along with examples to illustrate the use of the methods we describe. Several sensitivity analyses are presented to demonstrate the often overlooked and underestimated impact of invasion on productivity. The method can be used to compare different mud types, evaluate the benefits of different remediation methods, and value the impact of underbalanced drilling (UBD) on productivity.

2019 ◽  
Vol 14 ◽  
pp. 155892501985944
Author(s):  
Jitlada Boonlertsamut ◽  
Supaphorn Thumsorn ◽  
Toshikazu Umemura ◽  
Hiroyuki Hamada ◽  
Atsushi Sakuma

In this work, the spinning abilities of polyoxymethylene-based core–sheath bicomponent fibers were investigated. Bicomponent fibers were prepared using polyoxymethylene as the core material and poly(lactic acid) blended with polyoxymethylene or pure polyoxymethylene as sheath materials, and their characteristics were investigated and compared. Fiber properties such as elongation are important because they directly relate to the spinning performance during fiber processing. This work reports the impact of the composition designation of the core–sheath bicomponent fibers on the controllable stability of poly(lactic acid) in polyoxymethylene–poly(lactic acid) blends in the fibers, as well as the influence of the core–sheath material on the structure, fiber diameter and distribution, thermal stability, and mechanical properties of the core–sheath bicomponent fibers. It was found that the selection of core and sheath materials affected the structural characteristics of the fibers. The polyoxymethylene core–polyoxymethylene sheath (FV) fiber showed dimensional stability. However, the polyoxymethylene core–poly(lactic acid)/polyoxymethylene sheath (FT30) fiber provided the optimum limit of poly(lactic acid) content for controlling the stable properties of the core–sheath bicomponent fibers.


2012 ◽  
Vol 424-425 ◽  
pp. 1253-1257
Author(s):  
Xing Qiao Liu ◽  
Peng Zhang

In this paper, the scattering measuring principle of turbidity is introduced firstly. The new type of turbidity sensor probe designed in this paper overcomes the deficiencies of existing technologies, which has higher sensitivity, strong anti-interference and can detect the turbidity accurately and continuously. The system designed with the core of MCU C8051F020 is presented. Then the design of turbidity sensor probe, data acquisition, processing and non-linear compensation are introduced in detail. Besides, in order to eliminate the impact of temperature on the turbidity measurement and improve the measurement accuracy, temperature measurement circuit has been designed. Test results have shown that the designed on-line turbidity-meter has some advantages: low price, high precision, easy operation etc. It can be widely applied in the fields of waterworks, industrial production, aquaculture, environmental protection and so on


Author(s):  
T. T. Wong ◽  
Henry C.W. Lau

The nature of work is changing–to adapt to the global market. Many enterprises will concentrate on core activities and outsource other services to those with specialist expertise. Outsourcing is one way in which the pool of available knowledge can be enlarged and enhanced. Virtual enterprises are likely to rely on such knowledge to meet customers’ demands on a customer-built or small batch production basis. Although information technology plays an important role in linking the core company with its partner companies, it remains subservient to the humans that form the virtual enterprise. For effective knowledge management, it is clear that the electronic handshake would need to be based on trust between partner companies as well as the correct protocol. However, current practice showed that trust between top management teams was rarely considered in the selection of partner companies. A review of the relevant literature indicated that neither scholars nor practitioners agree on a single model of inter-firm trust that applies to all partner evaluation contexts. Hence a decision support system based on neural network and data mining technologies is proposed. A case example is used to illustrate the feasibility of incorporating inter-firm trust in real industrial situations.


2015 ◽  
Author(s):  
C. B. Maalouf ◽  
I. Baca Espinoza ◽  
S. M. Al-jaberi ◽  
J. Y. Marrauld ◽  
M. Amer

1979 ◽  
Vol 101 (2) ◽  
pp. 228-232
Author(s):  
J. D. Cyrus ◽  
M. DeVillier ◽  
J. Kaminski

A representative subsonic V/STOL aircraft operating on a single mission has been used as a baseline to investigate the impact of various propulsion system tradeoffs. After establishing a cycle for the propulsion system and estimating V/STOL related installation penalties, parametric engine-aircraft-mission studies have been conducted. These studies have established takeoff gross weight benefits of up to 13 percent that may be obtained by appropriate selection of the core engine sizing location. Studies of two, three and four engine versions of the configuration have shown that three engine and four engine aircraft may have 20 percent lower weight than a two engine version, but this arises at the cost of significantly reduced hot section life.


1955 ◽  
Vol 59 (529) ◽  
pp. 30-36 ◽  
Author(s):  
Syed Yusuff

SummaryIn this paper a theory of wrinkling in Sandwich Construction is presented in two parts. In the first part, the thickness of the core is regarded as finite. The wrinkling stress is given by a simple square root formula consisting of the Young's moduli of the materials and the ratio of the thickness of the face and core. In the second part of the theory the same procedure is followed, with the main difference that shearing stresses in the core are also considered, and the analysis is extended to the case where the face is supported by a sufficiently thick or a semi-infinite medium. The result for the wrinkling stress is a cubic root formula which consists of the moduli of the materials but indirectly depends upon the geometry of the structure; this formula is valid only if the ratio of the thickness of the core and the face is greater than or at least equal to the ratio of the width of the marginal zone of distortions in the core, and the thickness of the face. The width of the zone is also useful as the criterion which discriminates between the two cases of buckling as envisaged in this paper. The theory is compared with the previous works, and also with the test results already available. The selection of the experimental data comprises steel, aluminium alloy and Papreg (laminated paper plastic) as the face; and onazote, cellular cellulose acetate, granulated cork, sponge rubber and expanded formvar as the core materials over a wide range of core-face thickness ratio. The agreement between the theory and the tests is satisfactory.


2021 ◽  
Vol 15 (2) ◽  
pp. 184-204
Author(s):  
Tunde Adeosun ◽  
Moruffdeen Adabanija ◽  
Folake Akinpelu

Puzzling circumstance associated with formation damage near wellbore occur frequently, resulting in permeability impairments and increased pressure losses. Potential damage phenomenon usually starts from drilling to completion via production and such mechanisms have been fully considered. Most of the existing tasks to mitigate the near oil wellbore damages involve use of empirical models, conducting experiments, frequent shut down of wells for proper well tests and pressure maintenance are highly expensive and time consuming. Permeability impairments have been simulated by modifying Darcy’s equation to optimize reservoir pressure for improved near wellbore in horizontal wells. The model, transient linear partial differential equation (TLPDE) for impaired permeability is developed and numerically resolved using finite difference method. The model was implemented by writing codes in MATLAB language and the solution obtained was validated using synthetic/ field data. The results obtained for TLPDE model indicated pressure depletion over time. This was also shown for every values of coefficient of anisotropy until 400 days when the anisotropy became insignificant approaching isotropy condition, suggesting permeability impairment. Numerical simulation proved to be effective in simulating near oil wellbore damages. This paper describes the detailed mechanisms of formation damage and provided a numerical approach to model impaired permeability in horizontal wells. This approach allowed us to study the impact of various damage mechanisms related to drilling, completion conditions and significant improvement of near oil wellbore for well performance.


2019 ◽  
Vol 27 (1) ◽  
Author(s):  
Martin Bonev ◽  
◽  
Lyudmil Petrov ◽  
Miroslava Petkova ◽  
◽  
...  

The aim is to explore the peculiarities of the physical development and physical qualities of 12–14- year-old basketball players preparing for the 3 x 3 basketball game. The tasks are limited to: Studying and analyzing the peculiarities of the physical development and physical qualities of 12–14-year-old basketball players, according to information sources. Development and approbation of a specialized methodology for teenage basketball players aged 12–14, practicing basketball 3 to 3. Establishing the influence of the applied methodology on the physical development and physical qualities of the young basketball players. Upon completion of the impact, the physical development of the experimental group of basketball and basketball players 3 x 3 using the methodology we use shows stability. The coefficient of variation (V) is less than 10% in the tests “Growth”, “Expansion Stage”, “Expansion Seating”, marks a homogeneity that confirms the assertion that the selection of basketball players in this group is appropriate. Regarding the physical qualities it is evident that for the strength of the upper and lower limbs is worked, as it has a credible improvement but generally this quality develops later in the boys due to the peculiarities of the male organism and the sensational periods, stronger development after 15-16 years of age. The same applies to speed-hopping options. There is a credible improvement in test results jumping length from spot and rebound height.


Methodology ◽  
2007 ◽  
Vol 3 (1) ◽  
pp. 14-23 ◽  
Author(s):  
Juan Ramon Barrada ◽  
Julio Olea ◽  
Vicente Ponsoda

Abstract. The Sympson-Hetter (1985) method provides a means of controlling maximum exposure rate of items in Computerized Adaptive Testing. Through a series of simulations, control parameters are set that mark the probability of administration of an item on being selected. This method presents two main problems: it requires a long computation time for calculating the parameters and the maximum exposure rate is slightly above the fixed limit. Van der Linden (2003) presented two alternatives which appear to solve both of the problems. The impact of these methods in the measurement accuracy has not been tested yet. We show how these methods over-restrict the exposure of some highly discriminating items and, thus, the accuracy is decreased. It also shown that, when the desired maximum exposure rate is near the minimum possible value, these methods offer an empirical maximum exposure rate clearly above the goal. A new method, based on the initial estimation of the probability of administration and the probability of selection of the items with the restricted method ( Revuelta & Ponsoda, 1998 ), is presented in this paper. It can be used with the Sympson-Hetter method and with the two van der Linden's methods. This option, when used with Sympson-Hetter, speeds the convergence of the control parameters without decreasing the accuracy.


2004 ◽  
Vol 34 (136) ◽  
pp. 339-356
Author(s):  
Tobias Wölfle ◽  
Oliver Schöller

Under the term “Hilfe zur Arbeit” (aid for work) the federal law of social welfare subsumes all kinds of labour disciplining instruments. First, the paper shows the historical connection of welfare and labour disciplining mechanisms in the context of different periods within capitalist development. In a second step, against the background of historical experiences, we will analyse the trends of “Hilfe zur Arbeit” during the past two decades. It will be shown that by the rise of unemployment, the impact of labour disciplining aspects of “Hilfe zur Arbeit” has increased both on the federal and on the municipal level. For this reason the leverage of the liberal paradigm would take place even in the core of social rights.


Sign in / Sign up

Export Citation Format

Share Document