scholarly journals Bacterial Foraging Algorithm With Potential Field Guidance Mechanism

Author(s):  
Zhiyuan Li ◽  
Zhicheng Wang

Abstract To address the problems of weak quorum sensing ability and slow convergence speed in bacterial foraging algorithm, a bacterial foraging algorithm with potential field guidance mechanism is proposed. The algorithm combines the sampling guidance mechanism in the artificial potential field algorithm to provide the optimization direction for each bacterium; The original swimming operation of bacterial foraging algorithm is used to realize the local optimization strategy, and the local dimension update is added after swimming, so that the search range of bacteria in chemotaxis operation is wider; In the elimination and dispersal operation of bacterial foraging algorithm, double Gaussian function is introduced to re initialize the location of bacteria, so as to better avoid the algorithm falling into local extremum and improve the optimization ability of the algorithm. The experimental results show that the improved bacterial foraging algorithm has better optimization ability than the basic bacterial foraging algorithm.

2013 ◽  
Vol 655-657 ◽  
pp. 940-947 ◽  
Author(s):  
Xiong Fa Mai ◽  
Ling Li

Bacterial Foraging Algorithm (BFA) has recently emerged as a very powerful technique for optimization,but it also confronts the problems of slow convergence and premature convergence. To overcome the drawbacks of BFA, This article merge the idea of particle swarm optimization algorithm with adaptive inertia weigh into the bacterial foraging to improve the speed and convergence capabilities of BFA, and according to this a bacterial foraging algorithm based on PSO(APSO-BFA) is presented. Simulation results on five systems of nonlinear equations show that the proposed algorithm is superior to the other two kinds of bacterial foraging algorithm


2021 ◽  
Vol 9 (2) ◽  
pp. 161
Author(s):  
Xun Yan ◽  
Dapeng Jiang ◽  
Runlong Miao ◽  
Yulong Li

This paper proposes a formation generation algorithm and formation obstacle avoidance strategy for multiple unmanned surface vehicles (USVs). The proposed formation generation algorithm implements an approach combining a virtual structure and artificial potential field (VSAPF), which provides a high accuracy of formation shape keeping and flexibility of formation shape change. To solve the obstacle avoidance problem of the multi-USV system, an improved dynamic window approach is applied to the formation reference point, which considers the movement ability of the USV. By applying this method, the USV formation can avoid obstacles while maintaining its shape. The combination of the virtual structure and artificial potential field has the advantage of less calculations, so that it can ensure the real-time performance of the algorithm and convenience for deployment on an actual USV. Various simulation results for a group of USVs are provided to demonstrate the effectiveness of the proposed algorithms.


2021 ◽  
Vol 18 (3) ◽  
pp. 172988142110264
Author(s):  
Jiqing Chen ◽  
Chenzhi Tan ◽  
Rongxian Mo ◽  
Hongdu Zhang ◽  
Ganwei Cai ◽  
...  

Among the shortcomings of the A* algorithm, for example, there are many search nodes in path planning, and the calculation time is long. This article proposes a three-neighbor search A* algorithm combined with artificial potential fields to optimize the path planning problem of mobile robots. The algorithm integrates and improves the partial artificial potential field and the A* algorithm to address irregular obstacles in the forward direction. The artificial potential field guides the mobile robot to move forward quickly. The A* algorithm of the three-neighbor search method performs accurate obstacle avoidance. The current pose vector of the mobile robot is constructed during obstacle avoidance, the search range is narrowed to less than three neighbors, and repeated searches are avoided. In the matrix laboratory environment, grid maps with different obstacle ratios are compared with the A* algorithm. The experimental results show that the proposed improved algorithm avoids concave obstacle traps and shortens the path length, thus reducing the search time and the number of search nodes. The average path length is shortened by 5.58%, the path search time is shortened by 77.05%, and the number of path nodes is reduced by 88.85%. The experimental results fully show that the improved A* algorithm is effective and feasible and can provide optimal results.


Author(s):  
Zhengyan Chang ◽  
Zhengwei Zhang ◽  
Qiang Deng ◽  
Zheren Li

The artificial potential field method is usually applied to the path planning problem of driverless cars or mobile robots. For example, it has been applied for the obstacle avoidance problem of intelligent cars and the autonomous navigation system of storage robots. However, there have been few studies on its application to intelligent bridge cranes. The artificial potential field method has the advantages of being a simple algorithm with short operation times. However, it is also prone to problems of unreachable targets and local minima. Based on the analysis of the operating characteristics of bridge cranes, a two-dimensional intelligent running environment model of a bridge crane was constructed in MATLAB. According to the basic theory of the artificial potential field method, the double-layer artificial potential field method was deduced, and the path and track fuzzy processing method was proposed. These two methods were implemented in MATLAB simulations. The results showed that the improved artificial potential field method could avoid static obstacles efficiently.


Author(s):  
Mahamat Loutfi Imrane ◽  
Achille Melingui ◽  
Joseph Jean Baptiste Mvogo Ahanda ◽  
Fredéric Biya Motto ◽  
Rochdi Merzouki

Some autonomous navigation methods, when implemented alone, can lead to poor performance, whereas their combinations, when well thought out, can yield exceptional performances. We have demonstrated this by combining the artificial potential field and fuzzy logic methods in the framework of mobile robots’ autonomous navigation. In this article, we investigate a possible combination of three methods widely used in the autonomous navigation of mobile robots, and whose individual implementation still does not yield the expected performances. These are as follows: the artificial potential field, which is quick and easy to implement but faces local minima and robustness problems. Fuzzy logic is robust but computationally intensive. Finally, neural networks have an exceptional generalization capacity, but face data collection problems for the learning base and robustness. This article aims to exploit the advantages offered by each of these approaches to design a robust, intelligent, and computationally efficient controller. The combination of the artificial potential field and interval type-2 fuzzy logic resulted in an interval type-2 fuzzy logic controller whose advantage over the classical interval type-2 fuzzy logic controller was the small size of the rule base. However, it kept all the classical interval type-2 fuzzy logic controller characteristics, with the major disadvantage that type-reduction remains the main cause of high computation time. In this article, the type-reduction process is replaced with two layers of neural networks. The resulting controller is an interval type-2 fuzzy neural network controller with the artificial potential field controller’s outputs as auxiliary inputs. The results obtained by performing a series of experiments on a mobile platform demonstrate the proposed navigation system’s efficiency.


Sign in / Sign up

Export Citation Format

Share Document