Genome-Wide Analysis of the MADS-Box Gene Family in Foxtail Millet (Setaria Italica L.) and Expression Analyses to Reveal Their Role During Drought Stress
Abstract MADS-box gene family is a key regulatory factor family, which controls vegetative growth, reproductive development and can be used to mediate abiotic stresses in many plants. However, Knowledge of this gene family is still limited in Setaria italica. In the present study, a total of 70 SitMADS genes were identified and renamed on the basis of the chromosomal distribution of the SitMADS genes. According to gene structure, conserved motif and phylogenetic feature, the 70 SitMADSs were classified into type-Ⅰ (Mα, Mβ, Mγ) and type-Ⅱ (MIKCC and MIKC*). All of the SitMADS genes were randomly distributed on nine chromosomes, and five tandem duplicated genes and 12 pairs of duplicated gene segments were detected in the SitMADS genes family. Synteny analysis provided a high homology between SitMADS genes and OsMADS genes. A cis-element analysis inferred that SitMADS genes, except for SitMADS23, possessed at least one drought stress response and ABA(Abscisic Acid)-induced response cis-element. Real-time quantitative PCR analysis was used to detect the expression patterns of SitMADS genes in various tissues and demonstrated that the genes responded drought stress and ABA treatments. SitMADS23, SitMADS42, SitMADS51, SitMADS52, SitMADS58 and SitMADS64 were highly expressed in PEG(Polyethylene glycol) and drought stress, which suggested its important role in drought stress response. SitMADS51, SitMADS63 and SitMADS64 seemed to be responsive to ABA hormone signaling, suggesting that they were involved in the ABA signaling pathways. This paper provided a deep insight into the evolutionary characteristics of SitMADS genes. The results provide comprehensive information for further analyses of the molecular functions of the MADS-box gene family in Setaria italica.