scholarly journals Stage-Dependent Niche Segregation: Insights From a Multi-Dimensional Approach of Two Sympatric Sibling Seabirds

Author(s):  
Aymeric Fromant ◽  
John P.Y. Arnould ◽  
Karine Delord ◽  
Grace J Sutton ◽  
Alice Carravieri ◽  
...  

Abstract Niche theory predicts that to reduce competition for the same resource, sympatric ecologically similar species should exploit divergent niches and segregate in one or more dimensions. Seasonal variations in environmental conditions and energy requirements can influence the mechanisms and the degree of niche segregation. However, studies have overlooked the multi-dimensional aspect of niche segregation over the whole annual cycle, and key facets of species co-existence still remain ambiguous. The present study provides insights into the niche use and partitioning of two morphologically and ecologically similar seabirds, the common (CDP, Pelecanoides urinatrix) and the South Georgian diving petrels (SGDP, P. georgicus). Using phenology, at-sea distribution, diving behavior and isotopic data (during the incubation, chick-rearing and non-breeding periods), we show that the degree of partitioning was highly stage-dependent. During the breeding season, the greater niche segregation during chick-rearing than incubation supported the hypothesis that resource partitioning increases during energetically demanding periods. During the post breeding period, while the observed species-specific latitudinal differences were expected, CDP and SGDP also migrated in very divergent directions. This may indicate the implication of processes other than inter-species niche competition. Our results demonstrate the importance of integrative approaches combining concepts and techniques from different fields to better understand the co-existence of ecologically similar species. The stage-dependent and context-dependent niche segregation highlights the need for whole-year and multiple-site studies of niche partitioning of sympatric species. This is particularly relevant in order to fully understand the short and long-term effects of ongoing environmental changes on species distributions and communities.

2021 ◽  
Vol 664 ◽  
pp. 207-225
Author(s):  
Y Bedolla-Guzmán ◽  
JF Masello ◽  
A Aguirre-Muñoz ◽  
BE Lavaniegos ◽  
CC Voigt ◽  
...  

Ecologically similar species partition their use of resources and habitats and thus coexist due to ecological segregation in space, time, or diet. In seabirds, this segregation may differ over the annual cycle or vary inter-annually. We evaluated niche segregation in 3 sympatric storm-petrel species (Hydrobates melania, H. leucorhous, and H. microsoma) from the San Benito Islands, Mexico, during 2012 and 2013. We used diet samples and carbon (δ13C) and nitrogen (δ15N) isotopic values obtained from egg membranes, blood, feathers, and prey. We used krill samples to delineate marine δ13C and δ15N isoscapes for the Baja California Peninsula. During the breeding season, storm-petrels segregated regarding diet composition, stable isotope values, and isotopic niches. H. melania consumed higher trophic-position prey from neritic waters, while H. leucorhous and H. microsoma foraged on lower-trophic position prey from oceanic waters. Isotopic niches among species did not overlap in 2013, whereas those of H. microsoma and H. leucorhous overlapped in 2012. The feeding strategies of H. melania varied among breeding phases, and adults consumed different prey items from different areas compared to those of their offspring. H. microsoma adults and their chicks consumed the same prey items but from different habitats. During the non-breeding period, niche segregation between species persisted, except for H. microsoma and H. leucorhous during the molt of primary (P1) and undertail cover feathers. These 3 sympatric species coexist through niche segregation based on prey items and foraging areas that vary seasonally and year-round, probably due to changes in oceanographic conditions and the distribution and availability of prey.


2007 ◽  
Vol 28 (1) ◽  
pp. 51-64 ◽  
Author(s):  
K. Eduard Linsenmair ◽  
Tillmann Konrad ◽  
Raffael Ernst ◽  
Mark-Oliver Rödel

AbstractSelective logging has the potential to significantly alter environmental conditions experienced by both larval and adult amphibians and, therefore, may affect the population viability of particular species. In this study we evaluated the impacts of selective logging on the occurrence, larval development, and survival of three sympatric foam nest-constructing Leptodactylus species in a central Guyanan rainforest. The occurrence and abundance of adults differed among species and between habitat complexes. Species-habitat associations appeared to be linked to species-specific reproductive habitat requirements. The response of tadpoles to logging-related habitat alterations varied among species. Experiments on one of the focal species showed that tadpole development and growth depend on larval residence time within foam nests, and on environmental factors related to solar exposure and temperature of aquatic habitats. Tadpoles that were reared in foam nests over extended periods of time showed significant decrease in body mass. Tadpoles reared under exposed conditions developed more slowly than those reared under shaded conditions. Likewise, larval growth decelerated in the former. Larval survival differed among species and between habitats. Species-specific responses to disturbance-related environmental changes indicate that simplified generalizations that do not take into account species-specific variation are problematic. We, therefore, argue that sound conservation strategies for this group of amphibians would benefit by moving from generalizations to species specific recommendations.


Heredity ◽  
2021 ◽  
Author(s):  
Jessika M. M. Neves ◽  
Zachary J. Nolen ◽  
Nidia N. Fabré ◽  
Tamí Mott ◽  
Ricardo J. Pereira

AbstractHuman overexploitation of natural resources has placed conservation and management as one of the most pressing challenges in modern societies, especially in regards to highly vulnerable marine ecosystems. In this context, cryptic species are particularly challenging to conserve because they are hard to distinguish based on morphology alone, and thus it is often unclear how many species coexist in sympatry, what are their phylogenetic relationships and their demographic history. We answer these questions using morphologically similar species of the genus Mugil that are sympatric in the largest coastal Marine Protected Area in the Tropical Southwestern Atlantic marine province. Using a sub-representation of the genome, we show that individuals are assigned to five highly differentiated genetic clusters that are coincident with five mitochondrial lineages, but discordant with morphological information, supporting the existence of five species with conserved morphology in this region. A lack of admixed individuals is consistent with strong genetic isolation between sympatric species, but the most likely species tree suggests that in one case speciation has occurred in the presence of interspecific gene flow. Patterns of genetic diversity within species suggest that effective population sizes differ up to two-fold, probably reflecting differences in the magnitude of population expansions since species formation. Together, our results show that strong morphologic conservatism in marine environments can lead to species that are difficult to distinguish morphologically but that are characterized by an independent evolutionary history, and thus that deserve species-specific management strategies.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yuanxing Ye ◽  
Canshi Hu ◽  
Yiting Jiang ◽  
Geoffrey W. H. Davison ◽  
Changqing Ding

Abstract Background Interspecific competition is known to be strongest between those species that are both closely related and sympatric. Egrets are colonially nesting wetland birds that often overlap and can therefore be expected to compete in roosting and nesting habitat as well as in diet. According to the niche partitioning hypothesis, it is to be expected that these similar species would show differentiation in at least one of the main niche dimensions to reduce competition. We tested niche partitioning between the colonially nesting Little Egret (Egretta garzetta) and Cattle Egret (Bubulcus ibis) in temporal, spatial and trophic dimensions. Methods Field study was conducted in three mixed egret colonies in Yangxian County, southwest Shaanxi Province, central China. For each nest colony we recorded its spatial location, the height of nesting trees and of nests, the height of roosting trees and of roosting individuals within the trees. We determined the first egg-laying and first hatching dates of the two species. Craw dissection of storm-killed egret nestlings was used to measure the diet. Six transects were surveyed to study foraging habitat selection. Results We found that hatching time of Little Egrets peaked earlier (by about 1 month) than that of Cattle Egrets. Cattle Egrets nested and roosted higher than Little Egrets. The foraging habitats used by Little Egrets were dominated by river banks (73.49%), followed by paddy fields (13.25%) and reservoirs (10.84%), whereas Cattle Egret foraging sites were characterized by grasslands (44.44%), paddy fields (33.33%) and river banks (22.22%). Little Egrets consumed more fishes (65.66%) and Odonata larvae (13.69%) than Cattle Egrets, while Cattle Egrets were found feeding mainly on Coleoptera (29.69%) and Orthoptera (23.29%). Little Egrets preyed on larger mean biomasses of food items than Cattle Egrets. Conclusions Our results confirm the niche partitioning hypothesis as a mechanism for coexistence among ecologically similar species. In two coexisting egret species, niche partitioning is multidimensional, such that the two coexistent species occupy differing ecological space based on all three temporal, spatial and trophic niche dimensions.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Christina Petalas ◽  
Thomas Lazarus ◽  
Raphael A. Lavoie ◽  
Kyle H. Elliott ◽  
Mélanie F. Guigueno

AbstractSympatric species must sufficiently differentiate aspects of their ecological niche to alleviate complete interspecific competition and stably coexist within the same area. Seabirds provide a unique opportunity to understand patterns of niche segregation among coexisting species because they form large multi-species colonies of breeding aggregations with seemingly overlapping diets and foraging areas. Recent biologging tools have revealed that colonial seabirds can differentiate components of their foraging strategies. Specifically, small, diving birds with high wing-loading may have small foraging radii compared with larger or non-diving birds. In the Gulf of St-Lawrence in Canada, we investigated whether and how niche differentiation occurs in four incubating seabird species breeding sympatrically using GPS-tracking and direct field observations of prey items carried by adults to chicks: the Atlantic puffin (Fratercula arctica), razorbill (Alca torda), common murre (Uria aalge), and black-legged kittiwake (Rissa tridactyla). Although there was overlap at foraging hotspots, all species differentiated in either diet (prey species, size and number) or foraging range. Whereas puffins and razorbills consumed multiple smaller prey items that were readily available closer to the colony, murres selected larger more diverse prey that were accessible due to their deeper diving capability. Kittiwakes compensated for their surface foraging by having a large foraging range, including foraging largely at a specific distant hotspot. These foraging habitat specialisations may alleviate high interspecific competition allowing for their coexistence, providing insight on multispecies colonial living.


2013 ◽  
Vol 72 (1) ◽  
pp. 1-133 ◽  
Author(s):  
Višnja Besendorfer ◽  
Jelena Mlinarec

Abstract Satellite DNAis a genomic component present in virtually all eukaryotic organisms. The turnover of highly repetitive satellite DNAis an important element in genome organization and evolution in plants. Here we study the presence, physical distribution and abundance of the satellite DNAfamily AhTR1 in Anemone. Twenty-two Anemone accessions were analyzed by PCR to assess the presence of AhTR1, while fluorescence in situ hybridization and Southern hybridization were used to determine the abundance and genomic distribution of AhTR1. The AhTR1 repeat unit was PCR-amplified only in eight phylogenetically related European Anemone taxa of the Anemone section. FISH signal with AhTR1 probe was visible only in A. hortensis and A. pavonina, showing localization of AhTR1 in the regions of interstitial heterochromatin in both species. The absence of a FISH signal in the six other taxa as well as weak signal after Southern hybridization suggest that in these species AhTR1 family appears as relict sequences. Thus, the data presented here support the »library hypothesis« for AhTR1 satellite evolution in Anemone. Similar species-specific satellite DNAprofiles in A. hortensis and A. pavonina support the treatment of A. hortensis and A. pavonina as one species, i.e. A. hortensis s.l.


2016 ◽  
Vol 97 (7) ◽  
pp. 1479-1482 ◽  
Author(s):  
Thomas J. Ashton ◽  
Meriem Kayoueche-Reeve ◽  
Andrew J. Blight ◽  
Jon Moore ◽  
David M. Paterson

Accurate discrimination of two morphologically similar species of Patella limpets has been facilitated by using qPCR amplification of species-specific mitochondrial genomic regions. Cost-effective and non-destructive sampling is achieved using a mucus swab and simple sample lysis and dilution to create a PCR template. Results show 100% concurrence with dissection and microscopic analysis, and the technique has been employed successfully in field studies. The use of highly sensitive DNA barcoding techniques such as this hold great potential for improving previously challenging field assessments of species abundance.


2019 ◽  
Vol 101 (1) ◽  
pp. 80-91 ◽  
Author(s):  
Luis Biedma ◽  
Javier Calzada ◽  
José A Godoy ◽  
Jacinto Román

Abstract Interspecific competition affects population dynamics, distributional ranges, and evolution of competing species. The competitive exclusion principle states that ecologically similar species cannot coexist unless they exhibit niche segregation. Herein, we assess whether niche segregation allows the coexistence of Crocidura russula and C. suaveolens in southwestern Iberia and whether segregation is the result of current (ecological effect) or past (evolutionary effect) competition. We performed an annual live-trapping cycle in the two main habitats of the Odiel Marshes Natural Reserve (OMNR), the tidal marsh and the Mediterranean forest, both in syntopic (i.e., where both species co-occur) and allotopic (where only one of the two species occurs) sites within this Reserve. We modeled the presence–absence of each species in both habitats and sites by generalized linear mixed models. The coexistence of both species was favored by spatial and temporal niche segregation. Crocidura suaveolens was restricted to tidal marsh and did not occupy Mediterranean forest, even when C. russula was absent. We interpret this to be the result of competition in the past triggering an evolutionary response in C. suaveolens towards its specialization in tidal marsh. Moreover, the specialist C. suaveolens currently is outcompeting C. russula in tidal marshes, reversing the dominance pattern observed elsewhere. The degree of co-occurrence between both species in syntopic sites was low, as they showed inverse dynamics of seasonal abundances. Interspecific competition leading to habitat specialization favors the coexistence of these ecologically similar species.


2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Wade B. Worthen ◽  
Parker H. Morrow

In many communities of perching dragonflies (Odonata: Libellulidae), a size-dependent competitive hierarchy creates a positive relationship between male body size and perch height. We tested for this pattern among three similar-sized species:Celithemis elisa,C. fasciata, andC. ornata.Males were caught and photographed from May to July 2015 at Ashmore Heritage Preserve, Greenville County, SC, USA, and perch heights and perch distance to open water were measured. Five indices of body size were measured with ImageJ software: abdomen length, forewing length, hindwing length, area of forewing, and area of hindwing.Celithemis fasciatawas significantly larger than the other two species for all five anatomical characters and used perches that were significantly taller and closer to open water than the other species, though these differences changed over the summer. Aggressive interactions between and within species were tallied and compared to expected distributions based on mean relative abundances derived from hourly abundance counts. Patterns of interspecific aggression were also consistent with a size-dependent hierarchy: the largeC. fasciatawas attacked less frequently, and the smallC. ornatamore frequently, than predicted by their relative abundances. We conclude that even small differences in body size may contribute to niche partitioning in perch selection.


2014 ◽  
Vol 31 (2) ◽  
pp. 153-164 ◽  
Author(s):  
Melanie Dammhahn ◽  
Claude Fabienne Rakotondramanana ◽  
Steven M. Goodman

Abstract:Based on niche theory, closely related and morphologically similar species are not predicted to coexist due to overlap in resource and habitat use. Local assemblages of bats often contain cryptic taxa, which co-occur despite notable similarities in morphology and ecology. We measured in two different habitat types on Madagascar levels of stable carbon and nitrogen isotopes in hair (n = 103) and faeces (n = 57) of cryptic Vespertilionidae taxa to indirectly examine whether fine-grained trophic niche differentiation explains their coexistence. In the dry deciduous forest (Kirindy), six sympatric species ranged over 6.0‰ in δ15N, i.e. two trophic levels, and 4.2‰ in δ13C with a community mean of 11.3‰ in δ15N and −21.0‰ in δ13C. In the mesic forest (Antsahabe), three sympatric species ranged over one trophic level (δ15N: 2.4‰, δ13C: 1.0‰) with a community mean of 8.0‰ δ15N and −21.7‰ in δ13C. Multivariate analyses and residual permutation of Euclidian distances in δ13C–δ15N bi-plots revealed in both communities distinct stable isotope signatures and species separation for the hair samples among coexisting Vespertilionidae. Intraspecific variation in faecal and hair stable isotopes did not indicate that seasonal migration might relax competition and thereby facilitate the local co-occurrence of sympatric taxa.


Sign in / Sign up

Export Citation Format

Share Document