tidal marsh
Recently Published Documents


TOTAL DOCUMENTS

419
(FIVE YEARS 87)

H-INDEX

44
(FIVE YEARS 5)

Shore & Beach ◽  
2021 ◽  
pp. 13-20
Author(s):  
Albert McCullough ◽  
David Curson ◽  
Erik Meyers ◽  
Matthew Whitbeck

Tidal marsh loss at Blackwater National Wildlife Refuge (NWR) has been a major concern of refuge managers in recent decades. The approximately 2,035 hectares (5,028 acres) of tidal marsh that have converted to open water in Blackwater NWR since 1938 (Scott et al. 2009) represent one of the most significant areas of marsh conversion within the Chesapeake Bay. In 2013, a suite of climate adaptation strategies focused on sea level rise was developed for Blackwater NWR and surrounding areas of Dorchester County by the Blackwater Climate Adaptation Project (BCAP). The BCAP is a collaboration of The Conservation Fund, Audubon Maryland-DC, and the U.S. Fish and Wildlife Service, assisted by the Maryland Department of Natural Resources (MD DNR), U.S. Geological Survey, and others. In 2016, the BCAP implemented a thin-layer placement (TLP) project at Shorter’s Wharf in Blackwater NWR on 16 hectares (40 acres) of subsiding and fragmenting tidal marsh dominated by Schoenoplectus americanus, Spartina alterniflora, and Spartina patens. The purpose of the project was to increase the 16 hectares’ (40 acres’) resiliency to climate-driven sea level rise and storm impacts. The project built up the marsh elevation by applying thin layers of sediment dredged from the adjacent Blackwater River. The sediment enhancement was designed to extend the longevity of the marsh and increase its resiliency by raising its surface elevation in relation to the tidal regime and to return the habitat to its prior high-marsh condition with S. patens dominating. The colonization of this site by saltmarsh sparrow would be an indicator of success in reaching this goal. Dredging operations in November and December 2016 placed approximately 19,900 cubic meters (26,000 cubic yards) of sediment on the project site. Post-restoration elevations obtained one year after material placement indicated that, although the target elevations were achieved in 78% of the surveyed placement area, the material was not distributed uniformly. Coarser material tended to stack up at the discharge location while the grain size declined and the slopes flattened toward the periphery of the discharge area. In 2017, natural vegetation had regenerated through the placed sediment with vigorous regrowth of S. americanus and S. alterniflora . This regrowth was supplemented with hand-planting of more than 200,000 plugs of S. patens. Vegetation monitoring is ongoing to determine the plant composition evolution within the placement site. Pre-dredge and post-dredge bathymetric surveys reveal 70% accretion nearly two years after dredging within the borrow area footprint.


2021 ◽  
Vol 916 (1) ◽  
pp. 012032
Author(s):  
A Fatmawati

Abstract Banjarmasin City is regarded as the capital of South Kalimantan Province, acknowledged as the high-risk area of 2 major issues, such as flood due to sea-level rise, and settlement fire. Banjarmasin is located in tidal marsh zone with elevation of 0.16m below the sea level which relatively leads to annual urban flooding. Floods occur in Banjarmasin in 2021 become one of threats to city resilience. Thus, building city resilience against the unexpected climate change is of importance to create a suistanable and livable city. This study focuses on resilient city of Banjarmasin by utilizing the two different methods of analysis, including: public and SWOT analysis. Public analysis is utilized to assess Banjarmasin City policy of manifestation of city resilience. SWOT analysis is applied to identify various factors systematically in formulating the planning strategy. The results indicated that innovation in handling disaster by the local government towards resilient city has been apparent through several programs of disaster mitigation by collaborating with private sectors or institutions, with aims: to provide maximum public services, to promote climate change awareness to all levels of society, and to handle river issues such as river normalization.


2021 ◽  
Vol 214 ◽  
pp. 105898
Author(s):  
Karinna Nunez ◽  
Yinglong J. Zhang ◽  
Donna M. Bilkovic ◽  
Carlton Hershner
Keyword(s):  

2021 ◽  
Author(s):  
Olivier Gourgue ◽  
Jim van Belzen ◽  
Christian Schwarz ◽  
Wouter Vandenbruwaene ◽  
Joris Vanlede ◽  
...  

Abstract. There is an increasing demand for creation and restoration of tidal marshes around the world, as they provide highly valued ecosystem services. Yet, tidal marshes are strongly vulnerable to factors such as sea level rise and declining sediment supply. How fast the restored ecosystem develops, how resilient it is to sea level rise, and how this can be steered by restoration design, are key questions that are typically challenging to assess. In this paper, we apply a biogeomorphic model to a planned tidal marsh restoration by dike breaching. Our modeling approach integrates tidal hydrodynamics, sediment transport and vegetation dynamics, accounting for relevant fine-scale flow-vegetation interactions (less than 1 m2) and their impact on vegetation and landform development at the landscape scale (several km2) and on the long term (several decades). Our model performance is positively evaluated against observations of vegetation and geomorphic development in adjacent tidal marshes. Model scenarios demonstrate that the restored tidal marsh can keep pace with realistic rates of sea level rise and that its resilience is more sensitive to the availability of suspended sediments than to the rate of sea level rise. We further demonstrate that restoration design options can steer marsh resilience, as it affects the rates and spatial patterns of biogeomorphic development. By varying the width of two dike breaches, which serve as tidal inlets to the restored marsh, we show that a larger difference in the width of the two inlets leads to more diversity in restored habitats. This study showcases that biogeomorphic modeling can support management choices in restoration design to optimize tidal marsh development towards sustainable restoration goals.


Author(s):  
Nicole M. Aha ◽  
Peter B. Moyle ◽  
Nann A. Fangue ◽  
Andrew L. Rypel ◽  
John R. Durand

2021 ◽  
Vol 13 (17) ◽  
pp. 3406
Author(s):  
Grayson R. Morgan ◽  
Cuizhen Wang ◽  
James T. Morris

Coastal tidal marshes are essential ecosystems for both economic and ecological reasons. They necessitate regular monitoring as the effects of climate change begin to be manifested in changes to marsh vegetation healthiness. Small unmanned aerial systems (sUAS) build upon previously established remote sensing techniques to monitor a variety of vegetation health metrics, including biomass, with improved flexibility and affordability of data acquisition. The goal of this study was to establish the use of RGB-based vegetation indices for mapping and monitoring tidal marsh vegetation (i.e., Spartina alterniflora) biomass. Flights over tidal marsh study sites were conducted using a multi-spectral camera on a quadcopter sUAS near vegetation peak growth. A number of RGB indices were extracted to build a non-linear biomass model. A canopy height model was developed using sUAS-derived digital surface models and LiDAR-derived digital terrain models to assess its contribution to the biomass model. Results found that the distance-based RGB indices outperformed the regular radio-based indices in coastal marshes. The best-performing biomass models used the triangular greenness index (TGI; R2 = 0.39) and excess green index (ExG; R2 = 0.376). The estimated biomass revealed high biomass predictions at the fertilized marsh plots in the Long-Term Research in Environmental Biology (LTREB) project at the study site. The sUAS-extracted canopy height was not statistically significant in biomass estimation but showed similar explanatory power to other studies. Due to the lack of biomass samples in the inner estuary, the proposed biomass model in low marsh does not perform as well as the high marsh that is close to shore and accessible for biomass sampling. Further research of low marsh is required to better understand the best conditions for S. alterniflora biomass estimation using sUAS as an on-demand, personal remote sensing tool.


Sign in / Sign up

Export Citation Format

Share Document