scholarly journals SINS/BDS Tightly-Coupled Integrated Navigation Algorithm for Hypersonic Vehicle

Author(s):  
kai chen ◽  
Sen-sen PEI ◽  
Cheng-zhi ZENG ◽  
Gang DING

Abstract A tightly-coupled integrated navigation system (TCINS) for hypersonic vehicles is proposed when the satellite signals are disturbed. Firstly, the architecture of the integrated navigation system for the hypersonic vehicle is introduced. This system applies fiber SINS, BeiDou satellite receiver (BDS) and SOPC missile-born computer. Subsequently, the SINS mechanization for hypersonic vehicle is presented. The J2 model is employed for the normal gravity of the near space. An algorithm for updating the attitude, velocity and position is designed. State equations and measurement equations of SINS/BDS tightly-coupled integrated navigation for hypersonic vehicle are given, and a scheme of validity for satellite data is designed. Finally, the SINS/BDS tightly-coupled vehicle field tests and hardware-in-the-loop (HWIL) simulation tests are carried out. The vehicle field test and HWIL simulation results show that the heading angle error of tightly-coupled integrated navigation is within 0.2°, the pitch and roll angle errors are within 0.05°, the maximum velocity error is 0.3m/s, and the maximum position error is 10m.

2013 ◽  
Vol 278-280 ◽  
pp. 1719-1722 ◽  
Author(s):  
Xiao Yu Zhang ◽  
Chun Lei Song

A new scheme of small integrated navigation system based on micro inertial measurement unit (MIMU), global position system (GPS) is presented. The characteristic of these sensors and the structure of system are introduced respectively. The TI high performance floating point DSP TMS320C6713B is used as core processor, which is designed to realize both the data collecting and the navigation calculating. According to the error models of inertial navigation system, an integrated navigation algorithm used Kalman filter is proposed to fuse the information from all of the sensors. The simulation test results show the feasibility of the system design.


2014 ◽  
Vol 68 (2) ◽  
pp. 308-326 ◽  
Author(s):  
Wenjie Zhao ◽  
Zhou Fang ◽  
Ping Li

This paper reports on a new navigation algorithm for fixed-wing Unmanned Aerial Vehicles (UAVs) to bridge Global Position System (GPS) outages, based on a common navigation system configuration. The ground velocity is obtained from wind-compensated airspeed, and a centripetal force model is introduced to estimate the motion acceleration. Compensated by this acceleration, the gravity vector can be extracted from the accelerometer measurement. Finally, fusing the information of the ground velocity, magnetic heading, barometric height, and gravity vector, the Integrated Navigation System (INS) is reconstructed, and an Extended Kalman Filter (EKF) is used to estimate INS errors. Hardware-in-loop simulation results show that compared with INS-only solutions, the proposed method effectively resists long-term drift of INS errors and significantly improves the accuracy for dynamic navigation during GPS outages.


2014 ◽  
Vol 68 (2) ◽  
pp. 253-273 ◽  
Author(s):  
Shifei Liu ◽  
Mohamed Maher Atia ◽  
Tashfeen B. Karamat ◽  
Aboelmagd Noureldin

Autonomous Unmanned Ground Vehicles (UGVs) require a reliable navigation system that works in all environments. However, indoor navigation remains a challenge because the existing satellite-based navigation systems such as the Global Positioning System (GPS) are mostly unavailable indoors. In this paper, a tightly-coupled integrated navigation system that integrates two dimensional (2D) Light Detection and Ranging (LiDAR), Inertial Navigation System (INS), and odometry is introduced. An efficient LiDAR-based line features detection/tracking algorithm is proposed to estimate the relative changes in orientation and displacement of the vehicle. Furthermore, an error model of INS/odometry system is derived. LiDAR-estimated orientation/position changes are fused by an Extended Kalman Filter (EKF) with those predicted by INS/odometry using the developed error model. Errors estimated by EKF are used to correct the position and orientation of the vehicle and to compensate for sensor errors. The proposed system is verified through simulation and real experiment on an UGV equipped with LiDAR, MEMS-based IMU, and encoder. Both simulation and experimental results showed that sensor errors are accurately estimated and the drifts of INS are significantly reduced leading to navigation performance of sub-metre accuracy.


Electronics ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 1079 ◽  
Author(s):  
Di Liu ◽  
Hengjun Wang ◽  
Qingyuan Xia ◽  
Changhui Jiang

GNSS (global navigation satellite system) and SINS (strap-down inertial navigation system) integrated navigation systems have been the apparatus for providing reliable and stable position and velocity information (PV). Commonly, there are two solutions to improve the GNSS/SINS integration navigation system accuracy, i.e., employing GNSS with higher position accuracy in the integration system or utilizing the high-grade inertial measurement unit (IMU) to construct the integration system. However, technologies such as RTK (real-time kinematic) and PPP (precise point positioning) that improve GNSS positioning accuracy have higher costs and they cannot work under high dynamic environments. Also, an IMU with high accuracy will lead to a higher cost and larger volume, therefore, a low-cost method to enhance the GNSS/SINS integration accuracy is of great significance. In this paper, multiple receivers based on the GNSS/SINS integrated navigation system are proposed with the aim of providing more precise PV information. Since the chip-scale receivers are cheap, the deployment of multiple receivers in the GNSS/SINS integration will not significantly increase the cost. In addition, two different filtering methods with central and cascaded structure are employed to process the multiple receivers and SINS integration. In the centralized integration filter method, measurements from multiple receivers are directly processed to estimate the SINS errors state vectors. However, the computation load increases heavily due to the rising dimension of the measurement vector. Therefore, a cascaded integration filter structure is also employed to distribute the processing of the multiple receiver and SINS integration. In the cascaded processing method, each receiver is regarded as an individual “sensor”, and a standard federated Kalman filter (FKF) is implemented to obtain an optimal estimation of the navigation solutions. In this paper, a simulation and a field tests are carried out to assess the influence of the number of receivers on the PV accuracy. A detailed analysis of these position and velocity results is presented and the improvements in the PV accuracy demonstrate the effectiveness of the proposed method.


Sign in / Sign up

Export Citation Format

Share Document